Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(7): 10546-10555, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820188

RESUMO

Herein, we have theoretically investigated the sensing performance-including enormous increase in the sensitivity and figure of merit (FOM)-of a magneto-optical surface plasmon resonance (MOSPR) sensor, which is based on the transverse magneto-optical Kerr effect (T-MOKE) in a ferromagnet coupled with a noble-metal grating. Specifically, we propose to use a CoFeB magnetic slab covered by a subwavelength, periodic gold grating configured as a magnetoplasmonic heterostructure. In such a device, sharp, Fano-like T-MOKE signals of high amplitude can be achieved due to the surface plasmon resonances (SPRs) excited in the presence of the gold grating, especially after optimizing the grating period. Tiny changes in the refractive index of an analyte surrounding the MOSPR sensor can be measured by analyzing the shift in the angle of incidence of the resonance positions of the T-MOKE signals. By calculating these resonance positions, we have demonstrated that it is possible to achieve a considerable sensitivity of 105° RIU-1 and a FOM as high as ∼102. Such a MOSPR sensing system can be exploited in biosensors with high detection limits.

2.
Langmuir ; 36(48): 14666-14675, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33232170

RESUMO

The SnO2/Li4Ti5O12/C compound was gained via hydrothermal, sintering, and ball milling methods. Nano-grained SnO2/Li4Ti5O12 are homogeneously wrapped in a sheet-like graphite. Li4Ti5O12 possesses cyclic stability and superior rate capacity. Meanwhile, the SnO2/Li4Ti5O12 hybrid can supply abundant active sites for absorption of Li+, mitigate chemical stress in cycling, and prevent the ultrathin graphite nanosheets from stacking. Besides, the sheet-like graphite could reduce volume variation in cycling and reduce transmission distance for the electron or Li+. Therefore, an outstanding electrochemical property of the SnO2/Li4Ti5O12/C composite can be obtained.

3.
Langmuir ; 36(31): 9276-9283, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32674578

RESUMO

A new ternary Mo-SnO2-graphite composite has been constructed via hydrothermal and ball milling. The Mo/SnO2 hybrids were homogeneously dispersed in graphite nanosheets. In the Mo-SnO2-graphite, Mo can inhibit the Sn nanoparticle aggregation, enhance the reversible conversion reaction in lithiation, and improve the electrochemical performance. Consequently, the Mo-SnO2-graphite composite contributes a high capacity of 1317.4 mAh g-1 at 0.2 A g-1 after 200 cycles, remarkable rate property of 514.0 mAh g-1 at 5 A g-1, and long-term cyclic stabilization of 759.0 mAh g-1 after 950 cycles at 1.0 A g-1. With outstanding electrochemical performance and facial synthesis, the ternary Mo-SnO2-graphite is a hopeful anode material for lithium-ion batteries (LIBs).

5.
ACS Appl Mater Interfaces ; 15(2): 3077-3088, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598400

RESUMO

Potassium-ion batteries (PIBs) are receiving increasing attention at present because of their cheap and lithium-like charge/discharge processes. Nevertheless, the large potassium-ion radius leads to poor potassium intercalation/depotassium kinetics and unstable structure, hindering their development. Here, we synthesized a novel carbon quantum dot-derived carbon nanosphere-encapsulated Ti3C2 MXene (CNS@Ti3C2) composite by polymer pyrolysis, while carbon nanospheres were derived from carbon quantum dots. The composites can suppress the layer stacking of Ti3C2 and prevent oxidation, thereby stabilizing the layered structure of Ti3C2 MXene and improving the cycle life. Besides, carbon nanospheres can increase the specific surface area and active sites, and then more potassium ions can enter the electrode material and boost the reversible capacity. Further, carbon nanospheres are embedded between the Ti3C2 layers, which can increase the interlayer spacing, and the potassium ions are more easily inserted and extracted, thereby improving the potassium storage power and rate performance. The CNS@Ti3C2 composite possesses an excellent synergy, resulting in a high reversible capacity of 229 mAh g-1 at 100 mA g-1 after 200 repeated cycles and a long cycle life of 205 mAh g-1 at 500 mA g-1 after 1000 repeated cycles with high coulombic efficiency (above 99%). This work offers a novel strategy to utilize carbon with MXene in energy storage.

6.
Materials (Basel) ; 13(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784566

RESUMO

A series of tem-responsive and protein-resistance property silica-di-block polymers SiO2-g-PMMA-b-P(PEGMA) hybrids are synthesized with methyl methacrylate (MMA) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) by the surface-initiated atom transfer radical polymerization (SI-ATRP). The morphology in tetrahydrofuran (THF) solution, lower critical solution temperature (LCST), surface morphology, bovine serum albumin (BSA)-resistance property, and thermal stability of nanoparticles were analyzed. The results of 1H-NMR, GPC, and TEM prove that the silica-di-block hybrids have been obtained. The silica-di-block hybrids shows the LCST (52-64 °C) in aqueous solution. The hybrid films casted by THF present distributed uniform granular bulges and the film surface is relatively smooth (Ra = 15.4 nm ~ 10.5 nm). The results of QCM-D showed that only a small amount of BSA protein(△f = 18.6 ~ 11.8 Hz) was adsorbed on the surface of the films. The result of XPS also demonstrated that only a small amount of BSA protein was absorbed onto the surface of the film (N% = 1.86). The TGA analyses indicate that the thermal decomposition temperature of hybrids is 288 °C. Thus, it is suggested that the hybrids are served as a suitable coating with BSA resistance property and thermal stability.

7.
Materials (Basel) ; 13(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963510

RESUMO

The Al2O3-SiO2, La2O3-Al2O3, and La2O3-SiO2 binary phase diagrams were estimated by Redlich-Kister expression. La4.67Si3O13 (=La4.67(SiO4)3O) was introduced to improve the existing phase diagrams. The Al2O3-SiO2-La2O3 ternary phase diagram extrapolated by Kohler method was optimized. Then, the liquidus of Al2O3-SiO2-La2O3 system at 1600 °C was compared with Al2O3-SiO2-RE2O3 (RE = Rare Earth Elements) systems and experimental results in other literature. The high temperature experiments were conducted in the tube furnace at 1500 °C. Then the field emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) were employed to verify the calculated liquid region and precipitates phase at 1500 °C. Moreover, the liquidus of binary systems were compared with FactSage results and experiments. The optimized ternary phase diagram shows the relatively reliable region of liquid phase, and it is significant to the seal glass of solid oxide fuel cells and other fields being related to RE containing silicates.

8.
J Colloid Interface Sci ; 536: 149-159, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366180

RESUMO

HYPOTHESIS: Bionic superhydrophobicity including high contact angle, low sliding angle and nonstick property, combined with both strong pH and ultraviolet (UV) resistance, is difficult to simultaneously achieve for large-scale preparation of superhydrophobic surfaces by blending polymer with a nonreactive inorganic nanofiller. EXPERIMENTS: A series of high pH and UV-irradiation-resistant superhydrophobic nanocomposite films were prepared through UV-light-assisted chemical cross-linking among ternary components under nitrogen protection. Ethoxylated bisphenol A diacrylate, 2-(perfluorooctyl) ethyl acrylate, reactive thiol-coupled graphene nanosheets and photoinitiator were evenly mixed, followed by UV-irradiation curing. FINDINGS: Abundant 3D networks could be formed. A robust self-wrinkling surface morphology was formed due to a UV-curing-induced inner tension in the composites, 2D morphology-induced flexibility for graphene nanosheets and fluorine-bearing component-induced phase separation at the wetted surfaces. High roughness and use of the fluorine element endows the surfaces with superhydrophobicity and oleophobicity. A favorable nonstick performance was obtained. Superhydrophobicity could be maintained despite changing the film-forming substrate, pH of soaking solutions from 1 to 12, or use of a prolonged UV-irradiation time reaching 120 h. Therefore, both superhydrophobicity/oleophobicity and strong pH/UV resistance are finely balanced. This work might open up the way for large-scale fabrication of promising superhydrophobic surfaces.

9.
Materials (Basel) ; 11(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30216980

RESUMO

Promising comprehensive properties, including high permittivity, low dielectric loss, high breakdown strength, low electrical conductivity, and high thermal conductivity, are very hard to simultaneously obtain in high-frequency applicable polymer nanocomposite dielectrics. Instead of traditional electric percolation, in this work, a novel route based on a synergy between electric percolation and induced polarization has been raised to prepare 0⁻3 type nanocomposites with an enhanced high permittivity (high-k) property and low loss at high frequency. This work aimed at optimizing that synergy to achieve the favorable properties mentioned above in composite dielectrics used at high frequencies such as 1 MHz and 1 GHz. Conductive beta-SiC nanoparticles with a particle size of ~30 nm were employed as filler and both insulating poly(vinyl alcohol) and polyvinyl chloride were employed as polymer matrices to construct two composite systems. Utilizing polyvinyl chloride rather than poly(vinyl alcohol) realizes higher comprehensive electrical properties in composites, ascribed to optimization of that synergy. The optimization was achieved based on a combination of mild induced polarization and polarization-assisted electric percolation. Therefore, this work might open the way for large-scale production of high-frequency applicable composite dielectrics with competitive comprehensive electrical properties.

10.
Materials (Basel) ; 11(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966239

RESUMO

High overall performance, including high dielectric constant, low loss, high breakdown strength, fine flexibility, and strong tensile properties, is difficult to achieve simultaneously in polymer nanocomposites. In our prior work, we modified the surfaces of alpha-SiC nanoparticles and chemically cross-linked the polymeric matrix to simultaneously promote the dielectric and mechanical properties of composites. In this work, a novel strategy of high-temperature plastification towards a polymeric matrix has been proposed to fabricate ternary nanocomposites with balanced dielectric and mechanical characteristics by the solution cast method in order to reduce costs and simplify steps during large-scale preparation. Poly(vinylidene fluoride-chlorotrifluoroethylene) with inner double bonds as matrix, unfunctionalized alpha-SiC nanoparticles (NPs) as filler, and dibutyl phthalate (DBP) as plasticizer were employed. By introducing DBP and high-temperature treatment, the dispersion of NPs and the degree of compactness of the interface regions were both improved due to the reduced cohesion of the fluoropolymer, resulting in an increase in the dielectric constant (by 30%) and breakdown strength (by 57%) as well as the lowering of loss (by 30%) and conductivity (by 16%) in nanocomposites. Moreover, high-temperature plastification contributed to the promotion of flexible and tensile properties. This work might open the door to large-scale fabrication of nanocomposite dielectrics with high overall properties through the cooperation of the plasticizer and high temperature.

11.
Materials (Basel) ; 11(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441847

RESUMO

High discharged energy density and charge⁻discharge efficiency, in combination with high electric breakdown strength, maximum electric displacement and low residual displacement, are very difficult to simultaneously achieve in single-component polymer dielectrics. Plenty of researches have reported polymer based composite dielectrics filled with inorganic fillers, through complex surface modification of inorganic fillers to improve interface compatibility. In this work, a novel strategy of introducing environmentally-friendly biological polyester into fluoropolymer matrix has been presented to prepare all-organic polymer composites with desirable high energy storage properties by solution cast process (followed by annealing or stretching post-treatment), in order to simplify the preparation steps and lower the cost. Fluoropolymer with substantial ferroelectric domains (contributing to high dielectric response) as matrix and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with excellent linear polarization property (resulting in high breakdown strength) as filler were employed. By high-temperature annealing, the size of ferroelectric domains could be improved and interfacial air defects could be removed, leading to elevated high energy storage density and efficiency in composite. By mono-directional stretching, the ferroelectric domains and polyester could be regularly oriented along stretching direction, resulting in desired high energy storage performances as well. Besides, linear dielectric components could contribute to high efficiency from their strong rigidity restrain effect on ferroelectric component. This work might open up the way for a facile fabrication of promising all-organic composite dielectric films with high energy storage properties.

12.
ACS Appl Mater Interfaces ; 9(3): 2995-3005, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28068475

RESUMO

In this report, a simple solution-cast method was employed to prepare poly(dopamine) (PDA) encapsulated BaTiO3 (BT) nanoparticle (PDA@BT) filled composites using PVDF matrix cross-linked by the free radical initiator. The effects of both the particle encapsulation and matrix cross-linking on the mechanical and dielectric properties of the composites were carefully investigated. The results suggested that the introduction of BT particles improved permittivity of the composites to ∼30 at 100 Hz when particle contents of only 7 wt % were utilized. This was attributed to the enhanced polarization, which was induced by high permittivity ceramic particles. Compared to bare BT, PDA@BT particles could be dispersed more homogeneously in the matrix, and the catechol groups of PDA layer might form chelation with free ions present in the matrix. The latter might depress the ion conduction loss in the composites. Other results revealed that the formation of hydrogen-bonding between the PDA layer and the polymer, especially the chemical cross-linking across the matrix, resulted in increased Young' modulus by ∼25%, improved breakdown strength by ∼40%, and declined conductivity by nearly 1 order of magnitude when compared to BT filled composites. The composite films filled with PDA@BTs indicated greater energy storage capacities by nearly 190% when compared to the pristine matrix. More importantly, the excellent mechanical performance allowed the composite films to adopt uni- or biaxially stretching, a crucial feature required for the realization of high breakdown strength. This work provided a facile strategy for fabrication of flexible and stretchable dielectric composites with depressed dielectric loss and enhanced energy storage capacity at low filler loadings (<10 wt %).

13.
ACS Appl Mater Interfaces ; 8(29): 19054-65, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27377185

RESUMO

Remarkably improved dielectric properties including high-k, low loss, and high breakdown strength combined with promising mechanical performance such as high flexibility, good heat, and chemical resistivity are hard to be achieved in high-k dielectric composites based on the current composite fabrication strategy. In this work, a family of high-k polymer nanocomposites has been fabricated from a facile suspension cast process followed by chemical cross-linking at elevated temperature. Internal double bonds bearing poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE-DB)) in total amorphous phase are employed as cross-linkable polymer matrix. α-SiC particles with a diameter of 500 nm are surface modified with 3-aminpropyltriethoxysilane (KH-550) as fillers for their comparable dielectric performance with PVDF polymer matrix, low conductivity, and high breakdown strength. The interface between SiC particles and PVDF matrix has been finely tailored, which leads to the significantly elevated dielectric constant from 10 to over 120 in SiC particles due to the strong induced polarization. As a result, a remarkably improved dielectric constant (ca. 70) has been observed in c-PVDF/m-SiC composites bearing 36 vol % SiC, which could be perfectly predicted by the effective medium approximation (EMA) model. The optimized interface and enhanced compatibility between two components are also responsible for the depressed conductivity and dielectric loss in the resultant composites. Chemical cross-linking constructed in the composites results in promising mechanical flexibility, good heat and chemical stability, and elevated tensile performance of the composites. Therefore, excellent dielectric and mechanical properties are finely balanced in the PVDF/α-SiC composites. This work might provide a facile and effective strategy to fabricate high-k dielectric composites with promising comprehensive performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA