Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240103, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628126

RESUMO

Within-host interactions among coinfecting parasites can have major consequences for individual infection risk and disease severity. However, the impact of these within-host interactions on between-host parasite transmission, and the spatial scales over which they occur, remain unknown. We developed and apply a novel spatially explicit analysis to parasite infection data from a wild wood mouse (Apodemus sylvaticus) population. We previously demonstrated a strong within-host negative interaction between two wood mouse gastrointestinal parasites, the nematode Heligmosomoides polygyrus and the coccidian Eimeria hungaryensis, using drug-treatment experiments. Here, we show this negative within-host interaction can significantly alter the between-host transmission dynamics of E. hungaryensis, but only within spatially restricted neighbourhoods around each host. However, for the closely related species E. apionodes, which experiments show does not interact strongly with H. polygyrus, we did not find any effect on transmission over any spatial scale. Our results demonstrate that the effects of within-host coinfection interactions can ripple out beyond each host to alter the transmission dynamics of the parasites, but only over local scales that likely reflect the spatial dimension of transmission. Hence there may be knock-on consequences of drug treatments impacting the transmission of non-target parasites, altering infection risks even for non-treated individuals in the wider neighbourhood.


Assuntos
Coinfecção , Eimeria , Enteropatias Parasitárias , Parasitos , Animais , Camundongos , Interações Hospedeiro-Parasita , Murinae/parasitologia , Suscetibilidade a Doenças
2.
Proc Biol Sci ; 290(2011): 20231900, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964529

RESUMO

Vector-borne pathogens, many of which cause major suffering worldwide, often circulate in diverse wildlife communities comprising multiple reservoir host and/or vector species. However, the complexities of these systems make it challenging to determine the contributions these different species make to transmission. We experimentally manipulated transmission within a natural multihost-multipathogen-multivector system, by blocking flea-borne pathogen transmission from either of two co-occurring host species (bank voles and wood mice). Through genetic analysis of the resulting infections in the hosts and vectors, we show that both host species likely act together to maintain the overall flea community, but cross-species pathogen transmission is relatively rare-most pathogens were predominantly found in only one host species, and there were few cases where targeted treatment affected pathogens in the other host species. However, we do provide experimental evidence of some reservoir-spillover dynamics whereby reductions of some infections in one host species are achieved by blocking transmission from the other host species. Overall, despite the apparent complexity of such systems, we show there can be 'covert simplicity', whereby pathogen transmission is primarily dominated by single host species, potentially facilitating the targeting of key hosts for control, even in diverse ecological communities.


Assuntos
Sifonápteros , Animais , Camundongos , Arvicolinae , Especificidade de Hospedeiro , Animais Selvagens , Insetos Vetores
3.
Am Nat ; 200(4): 584-597, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36150195

RESUMO

AbstractThe level of detail on host communities needed to understand multihost parasite invasions is an unresolved issue in disease ecology. Coarse community metrics that ignore functional differences between hosts, such as host species richness, can be good predictors of invasion outcomes. Yet if host species vary in the extent to which they maintain and transmit infections, then explicitly accounting for those differences may be important. Through controlled mesocosm experiments and modeling, we show that interspecific differences between host species are important for community-wide infection dynamics of the multihost fungal parasite of amphibians (Batrachochytrium dendrobatidis [Bd]), but only up to a point. The most abundant host species in our system, fire salamander larvae (Salamandra salamandra), did not maintain or transmit infections. Rather, two less abundant "auxiliary" host species, Iberian tree frog (Hyla molleri) and spiny toad (Bufo spinosus) larvae, maintained and transmitted Bd. Frogs had the highest mean rates of Bd shedding, giving them the highest contributions to the basic reproduction number, R0. Toad contributions to R0 were substantial, however, and when examining community-level patterns of infection and transmission, the effects of frogs and toads were similar. Specifying more than just host species richness to distinguish salamanders from auxiliary host species was critical for predicting community-level Bd prevalence and transmission. Distinguishing frogs from toads, however, did not improve predictions. These findings demonstrate limitations to the importance of host species identities in multihost infection dynamics. Host species that exhibit different functional traits, such as susceptibility and infectiousness, may play similar epidemiological roles in the broader community.


Assuntos
Quitridiomicetos , Animais , Anuros , Batrachochytrium , Bufonidae/microbiologia , Larva/microbiologia , Urodelos
4.
J Anim Ecol ; 91(8): 1719-1730, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643978

RESUMO

Anthropogenic activities and natural events such as periodic tree masting can alter resource provisioning in the environment, directly affecting animals, and potentially impacting the spread of infectious diseases in wildlife. The impact of these additional resources on infectious diseases can manifest through different pathways, affecting host susceptibility, contact rate and host demography. To date however, empirical research has tended to examine these different pathways in isolation, for example by quantifying the effects of provisioning on host behaviour in the wild or changes in immune responses in controlled laboratory studies. Furthermore, while theory has investigated the interactions between these pathways, this work has focussed on a narrow subset of pathogen types, typically directly transmitted microparasites. Given the diverse ways that provisioning can affect host susceptibility, contact patterns or host demography, we may expect the epidemiological consequences of provisioning to vary among different parasite types, dependent on key aspects of parasite life history, such as the duration of infection and transmission mode. Focusing on an exemplar empirical system, the wood mouse Apodemus sylvaticus, and its diverse parasite community, we developed a suite of epidemiological models to compare how resource provisioning alters responses for a range of these parasites that vary in their biology (microparasite and macroparasite), transmission mode (direct, environmental and vector transmitted) and duration of infection (acute, latent and chronic) within the same host population. We show there are common epidemiological responses to host resource provisioning across all parasite types examined. In particular, the epidemiological impact of provisioning could be driven in opposite directions, depending on which host pathways (contact rate, susceptibility or host demography) are most altered by the addition of resources to the environment. Broadly, these responses were qualitatively consistent across all parasite types, emphasising the importance of identifying general trade-offs between provisioning-altered parameters. Despite the qualitative consistency in responses to provisioning across parasite types, we predicted notable quantitative differences between parasites, with directly transmitted parasites (those conforming to SIR and SIS frameworks) predicted to show the strongest responses to provisioning among those examined, whereas the vector-borne parasites showed negligible responses to provisioning. As such, these analyses suggest that different parasites may show different scales of response to the same provisioning scenario, even within the same host population. This highlights the importance of knowing key aspects of host-parasite biology, to understand and predict epidemiological responses to provisioning for any specific host-parasite system.


Assuntos
Doenças Transmissíveis , Parasitos , Doenças dos Roedores , Animais , Animais Selvagens , Interações Hospedeiro-Parasita , Camundongos , Murinae
5.
Parasitology ; 149(13): 1749-1759, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052517

RESUMO

Monitoring the prevalence and abundance of parasites over time is important for addressing their potential impact on host life histories, immunological profiles and their influence as a selective force. Only long-term ecological studies have the potential to shed light on both the temporal trends in infection prevalence and abundance and the drivers of such trends, because of their ability to dissect drivers that may be confounded over shorter time scales. Despite this, only a relatively small number of such studies exist. Here, we analysed changes in the prevalence and abundance of gastrointestinal parasites in the wild Soay sheep population of St. Kilda across 31 years. The host population density (PD) has increased across the study, and PD is known to increase parasite transmission, but we found that PD and year explained temporal variation in parasite prevalence and abundance independently. Prevalence of both strongyle nematodes and coccidian microparasites increased during the study, and this effect varied between lambs, yearlings and adults. Meanwhile, abundance of strongyles was more strongly linked to host PD than to temporal (yearly) dynamics, while abundance of coccidia showed a strong temporal trend without any influence of PD. Strikingly, coccidian abundance increased 3-fold across the course of the study in lambs, while increases in yearlings and adults were negligible. Our decades-long, intensive, individual-based study will enable the role of environmental change and selection pressures in driving these dynamics to be determined, potentially providing unparalleled insight into the drivers of temporal variation in parasite dynamics in the wild.


Assuntos
Coccídios , Doenças Transmissíveis , Gastroenteropatias , Enteropatias Parasitárias , Nematoides , Parasitos , Ovinos , Animais , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/parasitologia , Carneiro Doméstico , Gastroenteropatias/epidemiologia , Gastroenteropatias/veterinária
6.
Proc Biol Sci ; 288(1959): 20211735, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583583

RESUMO

Diverse eukaryotic taxa carry facultative heritable symbionts, microbes that are passed from mother to offspring. These symbionts are coinherited with mitochondria, and selection favouring either new symbionts, or new symbiont variants, is known to drive loss of mitochondrial diversity as a correlated response. More recently, evidence has accumulated of episodic directional selection on mitochondria, but with currently unknown consequences for symbiont evolution. We therefore employed a population genetic mean field framework to model the impact of selection on mitochondrial DNA (mtDNA) upon symbiont frequency for three generic scenarios of host-symbiont interaction. Our models predict that direct selection on mtDNA can drive symbionts out of the population where a positively selected mtDNA mutation occurs initially in an individual that is uninfected with the symbiont, and the symbiont is initially at low frequency. When, by contrast, the positively selected mtDNA mutation occurs in a symbiont-infected individual, the mutation becomes fixed and in doing so removes symbiont variation from the population. We conclude that the molecular evolution of symbionts and mitochondria, which has previously been viewed from a perspective of selection on symbionts driving the evolution of a neutral mtDNA marker, should be reappraised in the light of positive selection on mtDNA.


Assuntos
Artrópodes , Animais , Artrópodes/genética , DNA Mitocondrial/genética , Evolução Molecular , Mitocôndrias/genética , Simbiose
7.
Mol Ecol ; 30(5): 1336-1344, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428287

RESUMO

The outcome of natural enemy attack in insects is commonly influenced by the presence of protective symbionts in the host. The degree to which protection functions in natural populations, however, will depend on the robustness of the phenotype and symbiosis to variation in the abiotic environment. We studied the impact of a key environmental parameter-temperature-on the efficacy of the protective effect of the symbiont Spiroplasma on its host Drosophila hydei, against attack by the parasitoid wasp Leptopilina heterotoma. In addition, we investigated the thermal sensitivity of the symbiont's vertical transmission, which may be a key determinant of the ability of the symbiont to persist. We found that vertical transmission was more robust than previously considered, with Spiroplasma being maintained at 25°C, at 18°C and with 18/15°C diurnal cycles, with rates of segregational loss only increasing at 15°C. Protection against wasp attack was ablated before symbiont transmission was lost, with the symbiont failing to rescue the fly host at 18°C. We conclude that the presence of a protective symbiosis in natural populations cannot be simply inferred from the presence of a symbiont whose protective capacity has been tested under narrow controlled conditions. More broadly, we argue that the thermal environment is likely to represent an important determinant of the evolutionary ecology of defensive symbioses in natural environments, potentially driving seasonal, latitudinal and altitudinal variation in symbiont frequency.


Assuntos
Spiroplasma , Vespas , Animais , Evolução Biológica , Drosophila , Spiroplasma/genética , Simbiose
8.
Parasitology ; 146(8): 1096-1106, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30915927

RESUMO

Within-host interactions among coinfecting parasites are common and have important consequences for host health and disease dynamics. However, these within-host interactions have traditionally been studied in laboratory mouse models, which often exclude important variation and use unnatural host-parasite combinations. Conversely, the few wild studies of within-host interactions often lack knowledge of parasite exposure and infection history. Here we exposed laboratory-reared wood mice (Apodemus sylvaticus) that were derived from wild-caught animals to two naturally-occurring parasites (nematode: Heligmosomoides polygyrus, coccidia: Eimeria hungaryensis) to investigate the impact of coinfection on parasite infection dynamics, and to determine if the host immune response mediates this interaction. Coinfection led to delayed worm expulsion and prolonged egg shedding in H. polygyrus infections and lower peak E. hungaryensis oocyst burdens. By comparing antibody levels between wild and colony-housed mice, we also found that wild mice had elevated H. polygyrus-IgG1 titres even if currently uninfected with H. polygyrus. Using this unique wild-laboratory system, we demonstrate, for the first time, clear evidence for a reciprocal interaction between these intestinal parasites, and that there is a great discrepancy between antibody levels measured in the wild vs those measured under controlled laboratory conditions in relation to parasite infection and coinfection.


Assuntos
Coccidiose/veterinária , Coinfecção/veterinária , Eimeria/fisiologia , Murinae , Nematospiroides dubius/fisiologia , Doenças dos Roedores/parasitologia , Infecções por Strongylida/veterinária , Animais , Coccidiose/parasitologia , Coinfecção/parasitologia , Feminino , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/veterinária , Masculino , Infecções por Strongylida/parasitologia
9.
J Anim Ecol ; 87(3): 703-715, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111599

RESUMO

Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection.


Assuntos
Anuros , Interações Hospedeiro-Parasita , Trematódeos/fisiologia , Infecções por Trematódeos/veterinária , Animais , Metacercárias/crescimento & desenvolvimento , Metacercárias/fisiologia , Modelos Biológicos , Dinâmica não Linear , Densidade Demográfica , Trematódeos/crescimento & desenvolvimento , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/transmissão
10.
PLoS Biol ; 12(1): e1001769, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465177

RESUMO

The distinction between pathogen elimination and damage limitation during infection is beginning to change perspectives on infectious disease control, and has recently led to the development of novel therapies that focus on reducing the illness caused by pathogens (''damage limitation'')rather than reducing pathogen burdens directly (''pathogen elimination''). While beneficial at the individual host level, the population consequences of these interventions remain unclear. To address this issue,we present a simple conceptual framework for damage limitation during infection that distinguishes between therapies that are either host-centric (pro-tolerance) or pathogen-centric (anti-virulence). We then draw on recent developments from the evolutionary ecology of disease tolerance to highlight some potential epidemiological and evolutionary responses of pathogens to medical interventions that target the symptoms of infection. Just as pathogens are known to evolve in response to antimicrobial and vaccination therapies, we caution that claims of ''evolution-proof'' anti-virulence interventions may be premature, and further, that in infections where virulence and transmission are linked, reducing illness without reducing pathogen burden could have non-trivial epidemiological and evolutionary consequences that require careful examination.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Drogas em Investigação/uso terapêutico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Modelos Estatísticos , Carga Viral/efeitos dos fármacos , Viroses/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/biossíntese , Evolução Biológica , Contagem de Colônia Microbiana , Humanos , Ibuprofeno/uso terapêutico , Tolerância Imunológica/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/fisiologia , Virulência/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/biossíntese , Viroses/imunologia , Viroses/virologia
11.
J Anim Ecol ; 85(6): 1442-1452, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27380876

RESUMO

Many parasites infect multiple sympatric host species, and there is a general assumption that parasite transmission between co-occurring host species is commonplace. Such between-species transmission could be key to parasite persistence within a disease reservoir and is consequently an emerging focus for disease control. However, while a growing body of theory indicates the potential importance of between-species transmission for parasite persistence, conclusive empirical evidence from natural communities is lacking, and the assumption that between-species transmission is inevitable may therefore be wrong. We investigated the occurrence of between-species transmission in a well-studied multihost parasite system. We identified the flea-borne Bartonella parasites infecting sympatric populations of Apodemus sylvaticus (wood mice) and Myodes glareolus (bank voles) in the UK and confirmed that several Bartonella species infect both rodent species. However, counter to previous knowledge, genetic characterization of these parasites revealed covert host specificity, where each host species is associated with a distinct assemblage of genetic variants, indicating that between-species transmission is rare. Limited between-species transmission could result from rare encounters between one host species and the parasites infecting another and/or host-parasite incompatibility. We investigated the occurrence of such encounter and compatibility barriers by identifying the flea species associated with each rodent host, and the Bartonella variants carried by individual fleas. We found that the majority of fleas were host-generalists but the assemblage of Bartonella variants in fleas tended to reflect the assemblage of Bartonella variants in the host species they were collected from, thus providing evidence of encounter barriers mediated by limited between-species flea transfer. However, we also found several fleas that were carrying variants never found in the host species from which they were collected, indicating some degree of host-pathogen incompatibility when barriers to encounter are overcome. Overall, these findings challenge our default perceptions of multihost parasite persistence, as they show that despite considerable overlaps in host species ecology, separate populations of the same parasite species may circulate and persist independently in different sympatric host species. This questions our fundamental understanding of endemic transmission dynamics and the control of infection within natural reservoir communities.


Assuntos
Arvicolinae , Infecções por Bartonella/veterinária , Insetos Vetores/fisiologia , Murinae , Doenças dos Roedores/epidemiologia , Sifonápteros/fisiologia , Animais , Bartonella/classificação , Bartonella/genética , Bartonella/fisiologia , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , DNA Bacteriano/genética , Inglaterra/epidemiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Insetos Vetores/classificação , Insetos Vetores/microbiologia , Doenças dos Roedores/microbiologia , Análise de Sequência de DNA/veterinária , Sifonápteros/classificação , Sifonápteros/microbiologia
12.
Parasitology ; 143(7): 801-804, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27027318

RESUMO

The field of disease ecology - the study of the spread and impact of parasites and pathogens within their host populations and communities - has a long history of using mathematical models. Dating back over 100 years, researchers have used mathematics to describe the spread of disease-causing agents, understand the relationship between host density and transmission and plan control strategies. The use of mathematical modelling in disease ecology exploded in the late 1970s and early 1980s through the work of Anderson and May (Anderson and May, 1978, 1981, 1992; May and Anderson, 1978), who developed the fundamental frameworks for studying microparasite (e.g. viruses, bacteria and protozoa) and macroparasite (e.g. helminth) dynamics, emphasizing the importance of understanding features such as the parasite's basic reproduction number (R 0) and critical community size that form the basis of disease ecology research to this day. Since the initial models of disease population dynamics, which primarily focused on human diseases, theoretical disease research has expanded hugely to encompass livestock and wildlife disease systems, and also to explore evolutionary questions such as the evolution of parasite virulence or drug resistance. More recently there have been efforts to broaden the field still further, to move beyond the standard 'one-host-one-parasite' paradigm of the original models, to incorporate many aspects of complexity of natural systems, including multiple potential host species and interactions among multiple parasite species.


Assuntos
Doenças dos Animais , Doenças Transmissíveis , Interações Hospedeiro-Patógeno/fisiologia , Modelos Biológicos , Animais
13.
Ecol Lett ; 18(10): 1134-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26346689

RESUMO

In a recent article, we described a conceptual and analytical model to identify the key host species for parasite transmission in multi-host communities and used data from 11 gastro-intestinal parasites infecting up to five small mammal host species as an illustrative example of how the framework could be applied. A limitation of these empirical data was uncertainty in the identification of parasite species using egg/oocyst morphology, which could overestimate parasite sharing between host species. Here, we show that the key results of the original analysis, namely that (1) parasites naturally infect multiple host species, but typically rely on a small subset of infected host species for long-term maintenance, (2) that different mechanisms underlie how particular host species dominate transmission and (3) that these different mechanisms influence the predicted efficiency of disease control measures, are robust to analysis of a smaller subset of host-parasite combinations that we have greatest confidence in identifying. We further comment briefly on the need for accurate parasite identification, ideally using molecular techniques to quantify cross-species transmission and differentiate covert host specificity from true host generalism.

14.
Am Nat ; 186(5): 610-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26655774

RESUMO

Many parasites circulate endemically within communities of multiple host species. To understand disease persistence within these communities, it is essential to know the contribution each host species makes to parasite transmission and maintenance. However, quantifying those contributions is challenging. We present a conceptual framework for classifying multihost sharing, based on key thresholds for parasite persistence. We then develop a generalized technique to quantify each species' contribution to parasite persistence, allowing natural systems to be located within the framework. We illustrate this approach using data on gastrointestinal parasites circulating within rodent communities and show that, although many parasites infect several host species, parasite persistence is often driven by just one host species. In some cases, however, parasites require multiple host species for maintenance. Our approach provides a quantitative method for differentiating these cases using minimal reliance on system-specific parameters, enabling informed decisions about parasite management within poorly understood multihost communities.


Assuntos
Interações Hospedeiro-Parasita , Enteropatias Parasitárias/veterinária , Doenças dos Roedores/parasitologia , Animais , Enteropatias Parasitárias/parasitologia , Modelos Biológicos , Roedores
15.
New Phytol ; 208(4): 1251-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26243527

RESUMO

Many plant species produce defensive compounds that are often highly diverse within and between populations. The genetic and cellular mechanisms by which metabolite diversity is produced are increasingly understood, but the evolutionary explanations for persistent diversification in plant secondary metabolites have received less attention. Here we consider the role of plant-herbivore coevolution in the maintenance and characteristics of diversity in plant secondary metabolites. We present a simple model in which plants can evolve to invest in a range of defensive toxins, and herbivores can evolve resistance to these toxins. We allow either single-species evolution or reciprocal coevolution. Our model shows that coevolution maintains toxin diversity within populations. Furthermore, there is a fundamental coevolutionary asymmetry between plants and their herbivores, because herbivores must resist all plant toxins, whereas plants need to challenge and nullify only one resistance trait. As a consequence, average plant fitness increases and insect fitness decreases as number of toxins increases. When costs apply, the model showed both arms race escalation and strong coevolutionary fluctuation in toxin concentrations across time. We discuss the results in the context of other evolutionary explanations for secondary metabolite diversification.


Assuntos
Evolução Biológica , Herbivoria , Insetos/genética , Fenótipo , Doenças das Plantas , Plantas/genética , Toxinas Biológicas/metabolismo , Animais , Aptidão Genética , Plantas/metabolismo , Metabolismo Secundário
16.
Proc Biol Sci ; 281(1782): 20132286, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619434

RESUMO

Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite-resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread.


Assuntos
Infecções Bacterianas/imunologia , Infecções Bacterianas/parasitologia , Coinfecção , Interações Hospedeiro-Parasita , Micoses/imunologia , Micoses/parasitologia , Doenças Parasitárias/imunologia , Doenças Parasitárias/parasitologia , Viroses/imunologia , Viroses/parasitologia , Animais , Infecções Bacterianas/complicações , Humanos , Modelos Biológicos , Micoses/complicações , Parasitos/fisiologia , Doenças Parasitárias/complicações , Viroses/complicações
18.
Nat Commun ; 15(1): 1937, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431719

RESUMO

Understanding how biodiversity affects pathogen transmission remains an unresolved question due to the challenges in testing potential mechanisms in natural systems and how these mechanisms vary across biological scales. By quantifying transmission of an entire guild of parasites (larval trematodes) within 902 amphibian host communities, we show that the community-level drivers of infection depend critically on biological scale. At the individual host scale, increases in host richness led to fewer parasites per host for all parasite taxa, with no effect of host or predator densities. At the host community scale, however, the inhibitory effects of richness were counteracted by associated increases in total host density, leading to no overall change in parasite densities. Mechanistically, we find that while average host competence declined with increasing host richness, total community competence remained stable due to additive assembly patterns. These results help reconcile disease-diversity debates by empirically disentangling the roles of alternative ecological drivers of parasite transmission and how such effects depend on biological scale.


Assuntos
Parasitos , Trematódeos , Animais , Biodiversidade , Anfíbios , Larva , Interações Hospedeiro-Parasita
19.
Ecol Evol ; 14(6): e11310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38903143

RESUMO

Organisms have evolved diverse strategies to manage parasite infections. Broadly, hosts may avoid infection by altering behaviour, resist infection by targeting parasites or tolerate infection by repairing associated damage. The effectiveness of a strategy depends on interactions between, for example, resource availability, parasite traits (virulence, life-history) and the host itself (nutritional status, immunopathology). To understand how these factors shape host parasite-mitigation strategies, we developed a mathematical model of within-host, parasite-immune dynamics in the context of helminth infections. The model incorporated host nutrition and resource allocation to different mechanisms of immune response: larval parasite prevention; adult parasite clearance; damage repair (tolerance). We also considered a non-immune strategy: avoidance via anorexia, reducing intake of infective stages. Resources not allocated to immune processes promoted host condition, whereas harm due to parasites and immunopathology diminished it. Maximising condition (a proxy for fitness), we determined optimal host investment for each parasite-mitigation strategy, singly and combined, across different environmental resource levels and parasite trait values. Which strategy was optimal varied with scenario. Tolerance generally performed well, especially with high resources. Success of the different resistance strategies (larval prevention or adult clearance) tracked relative virulence of larval and adult parasites: slowly maturing, highly damaging larvae favoured prevention; rapidly maturing, less harmful larvae favoured clearance. Anorexia was viable only in the short term, due to reduced host nutrition. Combined strategies always outperformed any lone strategy: these were dominated by tolerance, with some investment in resistance. Choice of parasite mitigation strategy has profound consequences for hosts, impacting their condition, survival and reproductive success. We show that the efficacy of different strategies is highly dependent on timescale, parasite traits and resource availability. Models that integrate such factors can inform the collection and interpretation of empirical data, to understand how those drivers interact to shape host immune responses in natural systems.

20.
Ecol Lett ; 16(8): 975-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23714379

RESUMO

Controlling parasites that infect multiple host species often requires targeting single species that dominate transmission. Yet, it is rarely recognised that such 'key hosts' can arise through disparate mechanisms, potentially requiring different approaches for control. We identify three distinct, but not mutually exclusive, processes that underlie host species heterogeneity: infection prevalence, population abundance and infectiousness. We construct a theoretical framework to isolate the role of each process from ecological data and to explore the outcome of different control approaches. Applying this framework to data on 11 gastrointestinal parasites in small mammal communities across the eastern United States reveals variation not only in the magnitude of transmission asymmetries among host species but also in the processes driving heterogeneity. These differences influence the efficiency by which different control strategies reduce transmission. Identifying and tailoring interventions to a specific type of key host may therefore enable more effective management of multihost parasites.


Assuntos
Coccidiose/veterinária , Gastroenteropatias/veterinária , Helmintíase Animal/parasitologia , Roedores , Musaranhos , Animais , Cestoides/fisiologia , Coccídios/fisiologia , Coccidiose/epidemiologia , Coccidiose/parasitologia , Coccidiose/transmissão , Gastroenteropatias/epidemiologia , Gastroenteropatias/parasitologia , Gastroenteropatias/prevenção & controle , Helmintíase Animal/transmissão , Modelos Biológicos , Nematoides/fisiologia , Densidade Demográfica , Prevalência , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA