Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 59: 128548, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051578

RESUMO

Toll-like receptors (TLRs) 7 and 8 are key targets in the development of immunomodulatory drugs for treating infectious disease, cancer, and autoimmune disorders. These receptors can adopt both agonist and antagonist binding conformations that switch the receptor signal on or off to the downstream production of cytokines. In this study, we examined the effect of simple isomeric substitutions to the C2-butyl group of two imidazoquinoline agonists and evaluated the activity of these analogs using both TLR7 and TLR8 reporter cells and cytokine induction assays. Results are presented showing the C2-isobutyl and C2-cyclopropylmethyl isomers are both mixed TLR7/8 competitive antagonists of the parent agonist [4-Amino-1-(4-(aminomethyl)benzyl)-2-butyl-7-methoxycarbonyl-1H-imidazo[4,5-c]quinoline], indicating the conformation of the dimeric receptor complex is highly sensitive to steric perturbations to the ligand binding pocket. This observation is consistent with prior work demonstrating TLR7 and TLR8 activity is directly correlated to C2-alkyl substitutions that project into a hydrophobic pocket at the dimer interface of the receptor. The close structural relationship of the agonist/antagonist pairs identified here highlights the importance of this pocket in tipping the balance between the agonist and antagonist binding states of the receptor which may have significant ramifications to the design of imidazoquinoline-based immunomodulatory agents.


Assuntos
Imidazóis/farmacologia , Quinolinas/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
2.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565967

RESUMO

Molecular mechanics force field calculations have historically shown significant limitations in modeling the energetic and conformational interconversions of highly substituted furanose rings. This is primarily due to the gauche effect that is not easily captured using pairwise energy potentials. In this study, we present a refinement to the set of torsional parameters in the General Amber Force Field (gaff) used to calculate the potential energy of mono, di-, and gem-fluorinated nucleosides. The parameters were optimized to reproduce the pseudorotation phase angle and relative energies of a diverse set of mono- and difluoro substituted furanose ring systems using quantum mechanics umbrella sampling techniques available in the IpolQ engine in the Amber suite of programs. The parameters were developed to be internally consistent with the gaff force field and the TIP3P water model. The new set of angle and dihedral parameters and partial charges were validated by comparing the calculated phase angle probability to those obtained from experimental nuclear magnetic resonance experiments.


Assuntos
Simulação de Dinâmica Molecular , Nucleosídeos , Conformação Molecular , Termodinâmica , Água
3.
Med Chem Res ; 30(2): 399-409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564221

RESUMO

The type II transmembrane serine protease TMPRSS2 facilitates the entry of coronaviruses, such as SARS-CoV-2, into host cells by cleaving the S1/S2 interface of the viral spike protein. Based on structural data derived from X-ray crystallographic data of related trypsin-like proteases, a homology model of TMPRSS2 is described and validated using the broad spectrum COVID-19 drug candidate camostat as a probe. Both active site recognition and catalytic function are examined using quantum mechanics/molecular mechanics molecular dynamic (QM/MM MD) simulations of camostat and its active metabolite, 4-(4-guanidinobenzoyloxy) phenylacetate (GBPA). Substrate binding is shown to be primarily stabilized through salt bridge formation between the shared guanidino pharmacophore and D435 in pocket A (flanking the catalytic S441). Based on the binding mode of GBPA, residues K342 and W461 have been identified as potential contacts involved in TMPRSS2 selective binding and activity. Additional data is reported that indicates the transition state structure is stabilized through H-bonding interactions with the backbone N-H groups within an oxyanion hole following bottom-side attack of the carbonyl by S441. This is supported by prior work on related serine proteases suggesting further strategies to exploit in the design of more potent inhibitors. Taken overall, the proposed structure along with the key contact sites and mechanistic features identified should prove highly advantageous to the design and rational development of safe and effective therapeutics that target TMPRSS2 and avoid inhibition of other trypsin-dependent processes.

4.
Mol Pharm ; 17(6): 2109-2124, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383885

RESUMO

Activated natural killer (NK) cells can kill malignant tumor cells via granule exocytosis and secretion of IFN-γ, a key regulator of the TH1 response. Thus, mobilization of NK cells can augment cancer immunotherapy, particularly when mediated through antibody-dependent cellular cytotoxicity (ADCC). Stimulation of toll-like receptor (TLR)7/8 activity in dendritic cells promotes pro-inflammatory cytokine secretion and costimulatory molecule upregulation, both of which can potentiate NK cell activation. However, currently available TLR7/8 agonists exhibit unfavorable pharmacokinetics, limiting their in vivo efficacy. To enable efficient delivery to antigen-presenting cells, we encapsulated a novel imidazoquinoline-based TLR7/8 agonist in pH-responsive polymeric NPs. Enhanced costimulatory molecule expression on dendritic cells and a stronger pro-inflammatory cytokine response were observed with a NP-encapsulated agonist, compared to that with the soluble form. Treatment with NP-encapsulated agonists resulted in stronger in vivo cytotoxicity and prolonged activation of NK cells compared to that with a soluble agonist. In addition, TLR7/8 agonist-loaded NPs potentiated stronger NK cell degranulation, which resulted in enhanced in vitro and in vivo ADCC mediated by the epidermal growth factor receptor-targeting antibody cetuximab. TLR7/8 agonist-loaded NP treatment significantly enhanced the antitumor efficacy of cetuximab and an anti-HER2/neu antibody in mouse tumor models. Collectively, our data show that a pH-responsive NP-encapsulating TLR7/8 agonist could be used as a potent immunostimulatory adjuvant for antibody-based cancer immunotherapy by promoting NK cell activation.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Nanopartículas/química , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Células A549 , Animais , Células Dendríticas/metabolismo , Citometria de Fluxo , Humanos , Imiquimode/química , Células Matadoras Naturais/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanomedicina/métodos
5.
Mol Pharm ; 16(3): 1200-1210, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30620878

RESUMO

Cancer vaccines composed of tumor-associated antigens (TAAs) and toll-like receptor (TLR) agonists have shown promising antitumor efficacy in preclinical studies by generating antigen-specific CD8 T cells, but translation of cancer vaccines to the clinic has been limited due to variables responses and development of resistance. The tumor microenvironment deploys various immune escape mechanisms that neutralize CD8 T cell-mediated tumor rejection. Therefore, we hypothesized that modulation of the tumor microenvironment can augment CD8 T cell activation and enhance therapeutic efficacy of cancer vaccines. To accomplish this, we aimed to eliminate immune suppressive cells and block their inhibitory signaling. Combination of the tyrosine kinase inhibitor (TKI) sunitinib with a nanoparticle-based cancer vaccine (nanovaccine) resulted in the reduction of immune-suppressive myeloid-derived suppressive cells (MDSCs) and regulatory T cells (Tregs). Blockade of programmed death-ligand 1 (PD-L1) using anti-PD-L1 antibody was used to reduce CD8 T cell exhaustion. Combination of nanovaccine+sunitinib+PD-L1 antibody treatment reduced PD-L1high M2 macrophages and MDSCs and upregulated activation of CD8 T cells in the tumor. Nanovaccine+sunitinib+PD-L1 antibody treatment also stimulated antigen-specific CD8 T cell response, which led to improved therapeutic efficacy in MB49 and B16F10 murine tumor models. These results suggest that modulation of tumor microenvironment using sunitinib and PD-L1 blockade can significantly enhance the antitumor efficacy of cancer nanovaccine.


Assuntos
Anticorpos/uso terapêutico , Antígeno B7-H1/imunologia , Vacinas Anticâncer/uso terapêutico , Glicoproteínas de Membrana/agonistas , Neoplasias/terapia , Sunitinibe/uso terapêutico , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Animais , Antígenos de Neoplasias/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Interleucina-10/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Linfócitos T Reguladores/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Vacinação
6.
Bioorg Med Chem Lett ; 24(14): 3014-7, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24908610

RESUMO

A series of 9-alkylaminoacridines were synthesized and evaluated for activity against two strains of methicillin-resistant and one strain of methicillin-sensitive Staphylococcus aureus. Results are presented that show a clear structure activity relationship between the N-alkyl chain length and antibacterial activity with peak MIC99 values of 2-3 µM for alkyl chains ranging from 10 to 14 carbons in length. Although prior work has linked the function of acridine-based compounds to intercalation and topoisomerase inhibition, the present results show that 9-alkylaminoacridines likely function as amphiphilic membrane-active disruptors potentially in a similar manner as quaternary ammonium antimicrobials.


Assuntos
Aminoacridinas/síntese química , Aminoacridinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Aminoacridinas/química , Antibacterianos/química , Relação Dose-Resposta a Droga , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Mol Neurobiol ; 60(10): 6133-6144, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37428404

RESUMO

Proteasomal degradation of intrinsically disordered proteins, such as tau, is a critical component of proteostasis in both aging and neurodegenerative diseases. In this study, we investigated proteasomal activation by MK886 (MK). We previously identified MK as a lead compound capable of modulating tau oligomerization in a cellular FRET assay and rescuing P301L tau-induced cytotoxicity. We first confirmed robust proteasomal activation by MK using 20S proteasomal assays and a cellular proteasomal tau-GFP cleavage assay. We then show that MK treatment can significantly rescue tau-induced neurite pathology in differentiated SHSY5Y neurospheres. Due to this compelling result, we designed a series of seven MK analogs to determine if proteasomal activity is sensitive to structural permutations. Using the proteasome as the primary MOA, we examined tau aggregation, neurite outgrowth, inflammation, and autophagy assays to identify two essential substituents of MK that are required for compound activity: (1) removal of the N-chlorobenzyl group from MK negated both proteasomal and autophagic activity and reduced neurite outgrowth; and (2) removal of the indole-5-isopropyl group significantly improved neurite outgrowth and autophagy activity but reduced its anti-inflammatory capacity. Overall, our results suggest that the combination of proteasomal/autophagic stimulation and anti-inflammatory properties of MK and its derivatives can decrease tau-tau interactions and help rebalance dysfunctional proteostasis. Further development of MK to optimize its proteasomal, autophagic, and anti-inflammatory targets may lead to a novel therapeutic that would be beneficial in aging and neurodegenerative diseases.


Assuntos
Neuritos , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Neuritos/metabolismo , Citoplasma/metabolismo , Indóis , Proteínas tau/metabolismo
8.
ACS Bio Med Chem Au ; 3(3): 270-282, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363080

RESUMO

Tumor necrosis factor (TNF) plays an important role in the pathogenesis of inflammatory and autoimmune diseases such as rheumatoid arthritis and Crohn's disease. The biological effects of TNF are mediated by binding to TNF receptors, TNF receptor 1 (TNFR1), or TNF receptor 2 (TNFR2), and this coupling makes TNFR1-specific inhibition by small-molecule therapies essential to avoid deleterious side effects. Recently, we engineered a time-resolved fluorescence resonance energy transfer biosensor for high-throughput screening of small molecules that modulate TNFR1 conformational states and identified zafirlukast as a compound that inhibits receptor activation, albeit at low potency. Here, we synthesized 16 analogues of zafirlukast and tested their potency and specificity for TNFR1 signaling. Using cell-based functional assays, we identified three analogues with significantly improved efficacy and potency, each of which induces a conformational change in the receptor (as measured by fluorescence resonance energy transfer (FRET) in cells). The best analogue decreased NF-κB activation by 2.2-fold, IκBα efficiency by 3.3-fold, and relative potency by two orders of magnitude. Importantly, we showed that the analogues do not block TNF binding to TNFR1 and that binding to the receptor's extracellular domain is strongly cooperative. Despite these improvements, the best candidate's maximum inhibition of NF-κB is only 63%, leaving room for further improvements to the zafirlukast scaffold to achieve full inhibition and prove its potential as a therapeutic lead. Interestingly, while we find that the analogues also bind to TNFR2 in vitro, they do not inhibit TNFR2 function in cells or cause any conformational changes upon binding. Thus, these lead compounds should also be used as reagents to study conformational-dependent activation of TNF receptors.

9.
Invest New Drugs ; 30(4): 1443-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21789510

RESUMO

Human topoisomerase II (hTopoII) inhibitors are important chemotherapeutic agents in many different settings including treatment of malignant mesothelioma. Topoisomerase poisons, such as etoposide and doxorubicin, function by trapping the DNA-enzyme covalent complex producing DNA strand breaks which can ultimately lead to cancer cell death, as well as development of secondary malignancies. While these compounds have been used successfully in treating a wide variety of cancers, their use against mesothelioma has been limited. This study evaluates the anti-proliferative activity of series of acridine-based catalytic inhibitors of hTopoII using four mesothelioma cell lines (H513, H2372, H2461, and H2596). The results indicate these compounds inhibit malignant cell proliferation with EC(50) values ranging from 6.9 to 32 µM. Experiments are also performed that show that combination therapies may be used to increase potency. Based on the results of PARP cleavage and Guava Nexin assay, it is concluded that the primary mode of cell death is by apoptosis. The results are consistent with prior work involving pancreatic cancer and hTopoII catalytic inhibitors and suggest substituted acridines may hold promise in treating malignant mesothelioma.


Assuntos
Acridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Acridinas/química , Acridinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Citometria de Fluxo , Humanos , Inibidores da Topoisomerase II/química
10.
J Sex Med ; 7(3): 1147-59, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20113397

RESUMO

INTRODUCTION: Although the Sexual Encounter Profile (SEP) and International Index of Erectile Function (IIEF) are frequently used to measure erectile dysfunction (ED) treatment outcomes, stopwatch-assessed duration of erection is a new, objective, and potentially useful endpoint of ED treatment effect. AIMS: To assess the validity and reliability of stopwatch-assessed erection duration against responses to SEP items 2 (SEP-2) and 3 (SEP-3) and IIEF scale scores. METHODS: Data were taken from a multi-center trial of vardenafil for the treatment of ED. Patients were randomized to vardenafil 10 mg or placebo for 4 weeks. After a 1-week washout period, patients received the alternate therapy for an additional 4 weeks. An electronic diary was used to record information about sexual attempts. The duration of erection was measured using a stopwatch and transcribed into the diary. The SEP was completed following each sexual attempt, and the IIEF was completed at the end of each treatment period. MAIN OUTCOME MEASURES: Mean and median values of erection duration, mean SEP-2 and SEP-3 success rates, and scores for each of the 5 IIEF scales were calculated. RESULTS: At baseline, correlations of median erection duration with the 5 IIEF scale scores ranged from 0.06 to 0.53, while correlations with mean SEP-2 and SEP-3 success rates were 0.66 and 0.49, respectively. Compared with the other measures, mean and median values of erection duration were less sensitive to differences between placebo- and vardenafil-treated patients and less responsive to clinical change associated with treatment crossover. However, mean erection duration exhibited a good level of reliability (intraclass correlation coefficient = 0.72, P < 0.001). CONCLUSIONS: This study provides evidence for the validity and reliability of stopwatch-assessed duration of erection. Our findings suggest that erection duration is suitable for use as a unique endpoint in ED treatment-efficacy trials conducted for phosphodiesterase type 5 inhibitors.


Assuntos
Disfunção Erétil/diagnóstico , Disfunção Erétil/tratamento farmacológico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Cooperação Internacional , Relações Interpessoais , Inibidores da Fosfodiesterase 5 , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Comportamento Sexual , Inquéritos e Questionários , Humanos , Masculino , Valores de Referência , Índice de Gravidade de Doença , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Fatores de Tempo , Resultado do Tratamento , Triazinas/farmacologia , Triazinas/uso terapêutico , Dicloridrato de Vardenafila
11.
Bioorg Med Chem ; 18(4): 1456-63, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20129790

RESUMO

A series of substituted xanthenes was synthesized and screened for activity using DU-145, MCF-7, and HeLa cancer cell growth inhibition assays. The most potent compound, 9 g ([N,N-diethyl]-9-hydroxy-9-(3-methoxyphenyl)-9H-xanthene-3-carboxamide), was found to inhibit cancer cell growth with IC(50) values ranging from 36 to 50 microM across all three cancer cell lines. Structure-activity relationship (SAR) data is presented that indicates additional gains in potency may be realized through further derivatization of the compounds (e.g., the incorporation of a 7-fluoro substituent to 9 g). Results are also presented that suggest the compounds function through a unique mechanism of action as compared to that of related acridine and xanthone anticancer agents (which have been shown to intercalate into DNA and inhibit topoisomerase II activity). A structural comparison of these compounds suggests the differences in function may be due to the structure of the xanthene heterocycle which adopts a nonplanar conformation about the pyran ring.


Assuntos
Xantenos/síntese química , Xantenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray , Xantenos/química
12.
J Sex Marital Ther ; 36(1): 66-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20063238

RESUMO

Over 256 women, age 21 to 65, with acquired mixed female sexual disorders participated in a 16-week randomized, placebo-controlled, double-blind study of Zestra, a topical botanical preparation. Routine outcome instruments measured efficacy and safety. Zestra was well tolerated. The only significant safety finding was mild-to-moderate genital burning seen only in Zestra-treated subjects (14.6%). Zestra provided significant desire, arousal, and treatment satisfaction benefits for a broadly generalized group of women with sexual difficulties.


Assuntos
Carbolinas/uso terapêutico , Inibidores de Fosfodiesterase/uso terapêutico , Disfunções Sexuais Psicogênicas/tratamento farmacológico , Disfunções Sexuais Psicogênicas/epidemiologia , Adulto , Método Duplo-Cego , Feminino , Humanos , Óleos de Plantas , Tadalafila , Adulto Jovem
13.
Bioorg Med Chem Lett ; 19(15): 4459-62, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19501511

RESUMO

The cytotoxicity and mechanism of action of a series of substituted 9-aminoacridines is evaluated using topoisomerase I and cancer cell growth inhibition assays. In previous work, compounds of this type were shown to catalytically inhibit topoisomerase II, leading to a G1-S phase arrest of the cell cycle and apoptosis in pancreatic cancer cells in vitro and in vivo. The present study expands the potential utility of these compounds in the development of cancer therapeutics by showing that these compounds inhibit proliferation of cell lines derived from the nine most common human cancers. Further results show that at least one of the compounds effectively stabilizes topoisomerase I-DNA adduct formation in intact cells. RNA interference experiments, however, indicate that this interaction does not contribute to the drug-induced killing of cancer cells indicating the compounds may be non-lethal poisons of topoisomerase I.


Assuntos
Aminacrina/química , Antineoplásicos/síntese química , DNA Topoisomerases Tipo I/fisiologia , Neoplasias/tratamento farmacológico , Acridinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular , Química Farmacêutica/métodos , DNA Topoisomerases Tipo I/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/farmacologia , Humanos , Modelos Químicos , RNA Interferente Pequeno/metabolismo
14.
J Med Chem ; 62(5): 2305-2332, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30779564

RESUMO

Optochin, a cinchona alkaloid derivative discovered over 100 years ago, possesses highly selective antibacterial activity toward Streptococcus pneumoniae. Pneumococcal disease remains the leading source of bacterial pneumonia and meningitis worldwide. The structure-activity relationships of optochin were examined through modification to both the quinoline and quinuclidine subunits, which led to the identification of analogue 48 with substantially improved activity. Resistance and molecular modeling studies indicate that 48 likely binds to the c-ring of ATP synthase near the conserved glutamate 52 ion-binding site, while mechanistic studies demonstrated that 48 causes cytoplasmic acidification. Initial pharmacokinetic and drug metabolism analyses of optochin and 48 revealed limitations of these quinine analogues, which were rapidly cleared, resulting in poor in vivo exposure through hydroxylation pendants to the quinuclidine and O-dealkylation of the quinoline. Collectively, the results provide a foundation to advance 48 and highlight ATP synthase as a promising target for antibiotic development.


Assuntos
Antibacterianos/farmacologia , Alcaloides de Cinchona/farmacologia , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Streptococcus pneumoniae/enzimologia , Antibacterianos/química , Antibacterianos/metabolismo , Sítios de Ligação , Alcaloides de Cinchona/química , Alcaloides de Cinchona/metabolismo , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Relação Estrutura-Atividade
15.
ACS Infect Dis ; 5(4): 598-617, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30652474

RESUMO

The synthesis, absolute stereochemical configuration, complete biological characterization, mechanism of action and resistance, and pharmacokinetic properties of ( S)-(-)-acidomycin are described. Acidomycin possesses promising antitubercular activity against a series of contemporary drug susceptible and drug-resistant M. tuberculosis strains (minimum inhibitory concentrations (MICs) = 0.096-6.2 µM) but is inactive against nontuberculosis mycobacteria and Gram-positive and Gram-negative pathogens (MICs > 1000 µM). Complementation studies with biotin biosynthetic pathway intermediates and subsequent biochemical studies confirmed acidomycin inhibits biotin synthesis with a Ki of approximately 1 µM through the competitive inhibition of biotin synthase (BioB) and also stimulates unproductive cleavage of S-adenosyl-l-methionine (SAM) to generate the toxic metabolite 5'-deoxyadenosine. Cell studies demonstrate acidomycin selectively accumulates in M. tuberculosis providing a mechanistic basis for the observed antibacterial activity. The development of spontaneous resistance by M. tuberculosis to acidomycin was difficult, and only low-level resistance to acidomycin was observed by overexpression of BioB. Collectively, the results provide a foundation to advance acidomycin and highlight BioB as a promising target.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Sulfurtransferases/antagonistas & inibidores , Tiazolidinas/farmacologia , Tuberculose/microbiologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Biotina/biossíntese , Caproatos/síntese química , Caproatos/química , Caproatos/farmacologia , Farmacorresistência Bacteriana , Humanos , Cinética , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Sulfurtransferases/química , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiazolidinas/síntese química , Tiazolidinas/química , Tuberculose/tratamento farmacológico
16.
J Med Chem ; 51(6): 1824-30, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18293909

RESUMO

The structural basis to salvinorin A recognition of the kappa-opioid receptor is evaluated using a combination of site-directed mutagenesis and molecular-modeling techniques. The results show that salvinorin A recognizes a collection of residues in transmembrane II and VII, including Q115, Y119, Y313, I316, and Y320. The mutation of one hydrophobic residue in particular, I316, was found to completely abolish salvinorin A binding. As expected, none of the residues in transmembrane III or VI commonly associated with opiate recognition (such as D138 or E297) appear to be required for ligand binding. On the basis of the results presented here and elsewhere, a binding site model is proposed that aligns salvinorin A vertically within a pocket spanning transmembrane II and VII, with the 2' substituent directed toward the extracellular domains. The model explains the role that hydrophobic contacts play in binding this lipophilic ligand and gives insight into the structural basis to the mu-opioid receptor selectivity of 2'-benzoyl salvinorin (herkinorin).


Assuntos
Diterpenos/química , Diterpenos/farmacologia , Receptores Opioides kappa/efeitos dos fármacos , Animais , Sítios de Ligação , Diterpenos Clerodânicos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Camundongos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase/métodos , Ratos , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/genética , Receptores Opioides kappa/química , Receptores Opioides kappa/genética , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/genética , Relação Estrutura-Atividade
17.
J Med Chem ; 51(2): 179-82, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18163538

RESUMO

A series of substituted 9-aminoacridines is evaluated for antiproliferative activity toward pancreatic cancer cells. The results indicate that the compounds inhibit cell proliferation by inducing a G1-S phase arrest. A model is also developed that explains the molecular basis to inhibition through a DNA "threading" mechanism. We conclude that the drug-DNA complex formed blocks topoisomerase II binding and activity leading to catalytic inhibition of the enzyme and the induction of apoptosis and programmed cell death.


Assuntos
Aminoacridinas/síntese química , Antineoplásicos/síntese química , Apoptose , Inibidores da Topoisomerase II , Aminoacridinas/química , Aminoacridinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Neoplasias Pancreáticas , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 16(3): 1376-92, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17977730

RESUMO

A series of xanomeline analogs were synthesized and evaluated for binding at the M(1) muscarinic acetylcholine receptor (M(1) receptor). Specifically, compounds that substitute the O-hexyl chain of xanomeline with polar, ionizable, or conformationally restricted moieties were assessed for their ability to bind to the M(1) receptor in a wash-resistant manner (persistent binding). From our screen, several novel ligands that persistently bind to the M(1) receptor with greater affinity than xanomeline were discovered. Results indicate that persistent binding may arise not only from hydrophobic interactions but also from ionic interactions with a secondary M(1) receptor binding site. Herein, a qualitative model that accounts for both binding scenarios is proposed and applied to understand the structural basis to wash-resistant binding and long-acting effects of xanomeline-based compounds.


Assuntos
Piridinas/síntese química , Piridinas/farmacologia , Receptor Muscarínico M1/antagonistas & inibidores , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Animais , Células CHO , Ácidos Carboxílicos/química , Cricetinae , Cricetulus , Concentração de Íons de Hidrogênio , Estrutura Molecular , Piridinas/química , Receptor Muscarínico M1/metabolismo , Relação Estrutura-Atividade , Tiadiazóis/química
19.
Nanoscale ; 10(44): 20851-20862, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30403212

RESUMO

Synthetic imidazoquinoline-based toll-like receptor (TLR) 7/8 bi-specific agonists are promising vaccine adjuvants that can induce maturation of dendritic cells (DCs) and activate them to secrete pro-inflammatory cytokines. However, in vivo efficacy of these small molecule agonists is often hampered by their fast clearance from the injection site, limiting their use to topical treatments. In this study, we investigated the use of acidic pH-responsive poly(lactide-co-glycolide) (PLGA) nanoparticles for endo-lysosome specific release of 522, a novel TLR7/8 agonist. Bicarbonate salt was incorporated into the new formulation to generate carbon dioxide (CO2) gas at acidic pH, which can disrupt the polymer shell to rapidly release the payload. Compared to conventional PLGA nanoparticles, the pH responsive formulation resulted in 33-fold higher loading of 522. The new formulation demonstrated acid-responsive CO2 gas generation and drug release. The acid-responsive formulation increased the in vitro expression of co-stimulatory molecules on DCs and improved antigen-presentation via MHC I, both of which are essential for CD8 T cell priming. In vivo studies showed that the pH-responsive formulation elicited stronger antigen-specific CD8 T cell and natural killer (NK) cell responses than conventional PLGA nanoparticles, resulting in enhanced anticancer efficacy in a murine melanoma tumor model. Our results suggest that acidic-pH responsive, gas-generating nanoparticles are an efficient TLR7/8 agonist delivery platform for cancer immunotherapy.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Animais , Apresentação de Antígeno , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Dióxido de Carbono/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Concentração de Íons de Hidrogênio , Imunoterapia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Neoplasias/terapia , Ovalbumina/imunologia
20.
Biomaterials ; 164: 38-53, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29482062

RESUMO

Cytotoxic T lymphocytes (CTLs) play a major role in cancer immunotherapy because of their ability to directly kill tumor cells and secrete tumor suppressive cytokines. Anticancer vaccines aim to provoke tumor-specific CTL responses, which require activation of antigen presenting cells (APCs) including dendritic cells (DCs) and macrophages. Therefore, a potent immunostimulatory adjuvant capable of activating APCs is an essential component of anticancer vaccines. In this study, we introduce novel TLR 7/8 bi-specific agonists that significantly enhance cytokine secretion compared to TLR7 mono-selective compounds. Encapsulation of these TLR 7/8 agonists in poly(lactide-co-glycolide) (PLGA) nanoparticles increased the co-stimulatory molecule expression and antigen presentation via MHC I by DCs compared to the soluble agonist. When administered subcutaneously, these nanoparticles migrated to draining lymph node and triggered DC activation and expansion. This lead to expansion of antigen-specific CD8 T cells and enhanced CTL response, which resulted in significant prophylactic and therapeutic efficacy in melanoma, bladder and renal cell carcinoma tumor models. Importantly, our studies demonstrate significant reductions in systemic metastasis with the nanoparticle vaccine. Our results suggest novel TLR 7/8 agonist-encapsulated nanoparticles are potent immunostimulatory adjuvants for cancer immunotherapy.


Assuntos
Portadores de Fármacos , Imidazóis/farmacologia , Nanocápsulas , Poliglactina 910 , Quinolinas/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adjuvantes Imunológicos/farmacologia , Animais , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Feminino , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Linfócitos T Citotóxicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA