Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 34(4): 592-604, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35061028

RESUMO

Knowledge of transitive relationships between items can contribute to learning the order of a set of stimuli from pairwise comparisons. However, cognitive mechanisms of transitive inferences based on rank order remain unclear, as are relative contributions of reward associations and rule-based inference. To explore these issues, we created a conflict between rule- and reward-based learning during a serial ordering task. Rhesus macaques learned two lists, each containing five stimuli that were trained exclusively with adjacent pairs. Selection of the higher-ranked item resulted in rewards. "Small reward" lists yielded two drops of fluid reward, whereas "large reward" lists yielded five drops. Following training of adjacent pairs, monkeys were tested on novels pairs. One item was selected from each list, such that a ranking rule could conflict with preferences for large rewards. Differences between the corresponding reward magnitudes had a strong influence on accuracy, but we also observed a symbolic distance effect. That provided evidence of a rule-based influence on decisions. RT comparisons suggested a conflict between rule- and reward-based processes. We conclude that performance reflects the contributions of two strategies and that a model-based strategy is employed in the face of a strong countervailing reward incentive.


Assuntos
Aprendizagem , Recompensa , Animais , Humanos , Conhecimento , Macaca mulatta/psicologia , Motivação
2.
Adv Anat Embryol Cell Biol ; 224: 85-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551752

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterised by alterations in social interaction and communication combined with the presence of restricted interests and stereotyped behaviours. Mutations in several genes have been associated with ASD resulting in the generation of corresponding mouse models. Here, we focus on the behavioural (social and stereotyped behaviours), functional and structural traits of mice with mutations in genes encoding defined synaptic proteins including adhesion proteins, scaffolding proteins and subunits of channels and receptors. A meta-analysis on ASD mouse models shows that they can be divided into two subgroups. Cluster I gathered models highly impaired in social interest, stereotyped behaviours, synaptic physiology and protein composition, while Cluster II regrouped much less impaired models, with typical social interactions. This distribution was not related to gene families. Even within the large panel of mouse models carrying mutations in Shank3, the number of mutated isoforms was not related to the severity of the phenotype. Our study points that the majority of structural or functional analyses were performed in the hippocampus. However, to robustly link the structural and functional impairments with the behavioural deficits observed, brain structures forming relevant nodes in networks involved in social and stereotyped behaviours should be targeted in the future. In addition, the characterisation of core ASD-like behaviours needs to be more detailed using new approaches quantifying the variations in social motivation, recognition and stereotyped behaviours.


Assuntos
Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos , Fenótipo , Comportamento Social
3.
Front Mol Neurosci ; 16: 1139118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008785

RESUMO

Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.

4.
Front Mol Neurosci ; 11: 365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337855

RESUMO

Mouse models of autism can be used to study evolutionarily conserved mechanisms underlying behavioral abnormalities in social communication and repetitive behaviors. SHANK genes code for synaptic scaffolding proteins at excitatory synapses and mutations in all SHANK genes have been associated with autism. Here, we present three behavioral aspects of the mutant mice deleted for exon 16 in Shank2. First, we treated Shank2 mutant mice with methylphenidate to rescue the hyperactivity. Our failure to do so suggests that the hyperactivity displayed by Shank2 mutant mice is not related to the one displayed by the typical mouse models of hyperactivity, and might be more closely related to manic-like behaviors. Second, by testing the effect of group housing and social isolation on social interest, we highlighted that Shank2 mutant mice lack the typical flexibility to modulate social interest, in comparison with wild-type littermates. Finally, we established a new protocol to test for social recognition in a social context. We used this protocol to show that Shank2 mutant mice were able to discriminate familiar and unknown conspecifics in free interactions. Altogether, these studies shed some light on specific aspects of the behavioral defects displayed by the Shank2 mouse model. Such information could be used to orient therapeutic strategies and to design more specific tests to characterize the complex behavior of mouse models of autism.

5.
J Vis Exp ; (112)2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-27341321

RESUMO

Mice emit ultrasonic vocalizations in different contexts throughout development and in adulthood. These vocal signals are now currently used as proxies for modeling the genetic bases of vocal communication deficits. Characterizing the vocal behavior of mouse models carrying mutations in genes associated with neuropsychiatric disorders such as autism spectrum disorders will help to understand the mechanisms leading to social communication deficits. We provide here protocols to reliably elicit ultrasonic vocalizations in pups and in adult mice. This standardization will help reduce inter-study variability due to the experimental settings. Pup isolation calls are recorded throughout development from individual pups isolated from dam and littermates. In adulthood, vocalizations are recorded during same-sex interactions (without a sexual component) by exposing socially motivated males or females to an unknown same-sex conspecific. We also provide a protocol to record vocalizations from adult males exposed to an estrus female. In this context, there is a sexual component in the interaction. These protocols are established to elicit a large amount of ultrasonic vocalizations in laboratory mice. However, we point out the important inter-individual variability in the vocal behavior of mice, which should be taken into account by recording a minimal number of individuals (at least 12 in each condition). These recordings of ultrasonic vocalizations are used to evaluate the call rate, the vocal repertoire and the acoustic structure of the calls. Data are combined with the analysis of synchronous video recordings to provide a more complete view on social communication in mice. These protocols are used to characterize the vocal communication deficits in mice lacking ProSAP1/Shank2, a gene associated with autism spectrum disorders. More ultrasonic vocalizations recordings can also be found on the mouseTube database, developed to favor the exchange of such data.


Assuntos
Comportamento Social , Vocalização Animal , Acústica , Animais , Feminino , Masculino , Camundongos , Ultrassom , Gravação em Vídeo
6.
PLoS One ; 10(3): e0121802, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806942

RESUMO

Social communication is heavily affected in patients with neuropsychiatric disorders. Accordingly, mouse models designed to study the mechanisms leading to these disorders are tested for this phenotypic trait. Test conditions vary between different models, and the effect of these test conditions on the quantity and quality of social interactions and ultrasonic communication is unknown. The present study examines to which extent the habituation time to the test cage as well as the shape/size of the cage influence social communication in freely interacting mice. We tested 8 pairs of male mice in free dyadic social interactions, with two habituation times (20 min and 30 min) and three cage formats (rectangle, round, square). We tested the effect of these conditions on the different types of social contacts, approach-escape sequences, follow behavior, and the time each animal spent in the vision field of the other one, as well as on the emission of ultrasonic vocalizations and their contexts of emission. We provide for the first time an integrated analysis of the social interaction behavior and ultrasonic vocalizations. Surprisingly, we did not highlight any significant effect of habituation time and cage shape/size on the behavioral events examined. There was only a slight increase of social interactions with the longer habituation time in the round cage. Remarkably, we also showed that vocalizations were emitted during specific behavioral sequences especially during close contact or approach behaviors. The present study provides a protocol reliably eliciting social contacts and ultrasonic vocalizations in adult male mice. This protocol is therefore well adapted for standardized investigation of social interactions in mouse models of neuropsychiatric disorders.


Assuntos
Comunicação Animal , Relações Interpessoais , Comportamento Social , Vocalização Animal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA