Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 216(1): 25-35, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346116

RESUMO

In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.


Assuntos
Arachis , Proteínas de Plantas , Humanos , Arachis/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Anticorpos Monoclonais , Albuminas 2S de Plantas/química , Imunoglobulina E , Epitopos , Alérgenos
2.
Eur J Hum Genet ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553610

RESUMO

Voltage-gated L-type Cav1.3 Ca2+ channels support numerous physiological functions including neuronal excitability, sinoatrial node pacemaking, hearing, and hormone secretion. De novo missense mutations in the gene of their pore-forming α1-subunit (CACNA1D) induce severe gating defects which lead to autism spectrum disorder and a more severe neurological disorder with and without endocrine symptoms. The number of CACNA1D variants reported is constantly rising, but their pathogenic potential often remains unclear, which complicates clinical decision-making. Since functional tests are time-consuming and not always available, bioinformatic tools further improving pathogenicity potential prediction of novel variants are needed. Here we employed evolutionary analysis considering sequences of the Cav1.3 α1-subunit throughout the animal kingdom to predict the pathogenicity of human disease-associated CACNA1D missense variants. Co-variation analyses of evolutionary information revealed residue-residue couplings and allowed to generate a score, which correctly predicted previously identified pathogenic variants, supported pathogenicity in variants previously classified as likely pathogenic and even led to the re-classification or re-examination of 18 out of 80 variants previously assessed with clinical and electrophysiological data. Based on the prediction score, we electrophysiologically tested one variant (V584I) and found significant gating changes associated with pathogenic risks. Thus, our co-variation model represents a valuable addition to complement the assessment of the pathogenicity of CACNA1D variants completely independent of clinical diagnoses, electrophysiology, structural or biophysical considerations, and solely based on evolutionary analyses.

3.
J Gen Physiol ; 156(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175169

RESUMO

Voltage-dependent and Ca2+-dependent inactivation (VDI and CDI, respectively) of CaV channels are two biologically consequential feedback mechanisms that fine-tune Ca2+ entry into neurons and cardiomyocytes. Although known to be initiated by distinct molecular events, how these processes obstruct conduction through the channel pore remains poorly defined. Here, focusing on ultrahighly conserved tryptophan residues in the interdomain interfaces near the selectivity filter of CaV1.3, we demonstrate a critical role for asymmetric conformational changes in mediating VDI and CDI. Specifically, mutagenesis of the domain III-IV interface, but not others, enhanced VDI. Molecular dynamics simulations demonstrate that mutations in distinct selectivity filter interfaces differentially impact conformational flexibility. Furthermore, mutations in distinct domains preferentially disrupt CDI mediated by the N- versus C-lobes of CaM, thus uncovering a scheme of structural bifurcation of CaM signaling. These findings highlight the fundamental importance of the asymmetric arrangement of the pseudotetrameric CaV pore domain for feedback inhibition.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Mutação , Miócitos Cardíacos , Neurônios
4.
J Chem Theory Comput ; 20(5): 2321-2333, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373307

RESUMO

Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model. Here, we investigate protein folding, unfolding, and misfolding of fast-folding proteins by examining different force fields with their recommended water models, i.e., ff14SB with the TIP3P model and ff19SB with the OPC model. To this end, we generated long conventional MD simulations highlighting the perks and pitfalls of these setups. Using Markov state models, we defined kinetically independent conformational substates and emphasized their distinct characteristics, as well as their corresponding state probabilities. Surprisingly, we found substantial differences in thermodynamics and kinetics of protein folding, depending on the combination of the protein force field and water model, originating primarily from the different water models. These results emphasize the importance of carefully choosing the force field and the respective water model as they determine the accuracy of the observed dynamics of folding events. Thus, the findings support the hypothesis that the water model is at least equally important as the force field and hence needs to be considered in future studies investigating protein dynamics and folding in all areas of biophysics.


Assuntos
Dobramento de Proteína , Água , Proteínas , Simulação de Dinâmica Molecular , Conformação Molecular , Termodinâmica , Conformação Proteica , Desdobramento de Proteína
5.
Structure ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39146931

RESUMO

Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples. We reveal differences in how the selected IgG1s engage their antigens and human FcRn and show how these differences translate into distinct cellular handling properties related to their pH-dependent antigen binding phenotypes and Fc-engineering for improved FcRn binding. Our study showcases the complexity of engineering pH-dependent antigen binding IgG1s and demonstrates the effects on cellular antibody-antigen recycling.

6.
Protein Sci ; 33(7): e5035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923049

RESUMO

Single-domain antibodies (sdAbs), such as VHHs, are increasingly being developed for gastrointestinal (GI) applications against pathogens to strengthen gut health. However, what constitutes a suitable developability profile for applying these proteins in a gastrointestinal setting remains poorly explored. Here, we describe an in vitro methodology for the identification of sdAb derivatives, more specifically divalent VHH constructs, that display extraordinary developability properties for oral delivery and functionality in the GI environment. We showcase this by developing a heterodivalent VHH construct that cross-inhibits the toxic activity of the glycosyltransferase domains (GTDs) from three different toxinotypes of cytotoxin B (TcdB) from lineages of Clostridium difficile. We show that the VHH construct possesses high stability and binding activity under gastric conditions, in the presence of bile salts, and at high temperatures. We suggest that the incorporation of early developability assessment could significantly aid in the efficient discovery of VHHs and related constructs fit for oral delivery and GI applications.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Clostridioides difficile , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Clostridioides difficile/imunologia , Toxinas Bacterianas/química , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Humanos , Trato Gastrointestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA