Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 68: 258-278, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32380233

RESUMO

Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Animais , Humanos
2.
Transl Oncol ; 27: 101569, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36274541

RESUMO

Quercetin is a natural flavonoid with well-established anti-proliferative activities against a variety of cancers. Telomerase inhibitor MST-312 also exhibits anti-proliferative effect on various cancer cells independent of its effect on telomere shortening. However, due to their low absorption and toxicity at higher doses, their clinical development is limited. In the present study, we examine the synergistic potential of their combination in cancer cells, which may result in a decrease in the therapeutic dosage of these compounds. We report that MST-312 and quercetin exhibit strong synergism in ovarian cancer cells with combination index range from 0.2 to 0.7. Co-treatment with MST-312 and quercetin upregulates the DNA damage and augments apoptosis when compared to treatment with either compound alone or a vehicle. We also examined the effect of these compounds on the proliferation of normal ovarian surface epithelial cells (OSEs). MST-312 has a cytoprotective impact in OSEs at lower dosages, but is inhibitory at higher doses. Quercetin did not affect the OSEs proliferation at low concentrations while at higher concentrations it is inhibitory. Notably, combination of MST-312 and quercetin had no discernible impact on OSEs. These observations have significant implications for future efforts towards maximizing efficacy in cancer therapeutics as this co-treatment specifically affects cancer cells and reduces the effective dosage of both the compounds.

3.
Anticancer Agents Med Chem ; 22(3): 469-484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34102988

RESUMO

DNA's integrity is continuously challenged by intrinsic cellular processes and environmental agents. To overcome this genomic damage, cells have developed multiple signalling pathways collectively named as DNA Damage Response (DDR) and composed of three components: (i) sensor proteins, which detect DNA damage, (ii) mediators that relay the signal downstream and recruit the repair machinery and (iii) the repair proteins, which restore the damaged DNA. A flawed DDR and failure to repair the damage lead to the accumulation of genetic lesions and increased genomic instability, which is recognized as a hallmark of cancer. Cancer cells tend to harbor increased mutations in DDR genes and often have fewer DDR pathways than normal cells. This makes cancer cells more dependent on particular DDR pathways and thus become more susceptible to compounds inhibiting those pathways compared to normal cells, which have all the DDR pathways intact. Understanding the roles of different DDR proteins in the DNA damage response and repair pathways and the identification of their structures have paved the way for development of their inhibitors as targeted cancer therapy. In this review, we describe the major participants of various DDR pathways, their significance in carcinogenesis and focus on the inhibitors developed against several key DDR proteins.


Assuntos
Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Dano ao DNA , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo
4.
Environ Toxicol Pharmacol ; 85: 103633, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33711516

RESUMO

External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.


Assuntos
Poluentes Ambientais/toxicidade , Telomerase/metabolismo , Telômero/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Humanos
5.
Cancers (Basel) ; 12(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674474

RESUMO

Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA