Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Anal Chem ; 95(30): 11483-11490, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463035

RESUMO

Rotavirus double-layered particles (DLPs) are studied in the gas phase with a high-resolution differential mobility analyzer (DMA). DLPs were transferred to 10 mM aqueous ammonium acetate, electrosprayed into the gas phase, converted into primarily singly charged particles, and DMA-analyzed. Up to seven slightly different conformations were resolved, whose apparently random, fast (minutes), and reversible interconversions were followed in real time. They sometimes evolved into just two distinct structures, with periods of one dominating over the other and vice versa. Differences between the DLP structures in solution and in the gas phase are clearly revealed by the smaller DLP diameter found here (60 versus 70 nm). Nevertheless, we argue that the multiple gas-phase conformers observed originate in as many conformations pre-existing in solution. We further hypothesize that these conformers correspond to incomplete DLPs having lost some of the VP6 trimer quintets surrounding each of the 12 5-fold axes. Instances of this peculiar loss have been previously documented by cryoelectron microscopy for the rotavirus Wa strain, as well as via charge detection mass spectrometry for five other rotavirus strains included in the RotaTec vaccine. Evidence of this loss systematically found for all 7 rotavirus types so far studied in aqueous ammonium acetate may be a special feature of this electrolyte.


Assuntos
Rotavirus , Microscopia Crioeletrônica , Rotavirus/química , Proteínas do Capsídeo
2.
Anal Chem ; 93(38): 12938-12943, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34520175

RESUMO

We use the Φ6 bacteriophage previously exploited as a BSL-1 surrogate of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS) coronavirus to obtain the first high-resolution gas phase mobility spectra of an enveloped virus. The relative full width at half-maximum found for the viral mobility distribution (FWHMZ < 3.7%) is substantially narrower than that reported by prior mobility or microscopy studies with other enveloped viruses. It is nevertheless not as narrow as that recently found for several non-enveloped viruses (FWHMZ ≈ 2%), presumably due to particle to particle variability of enveloped viruses. This 3.7% is an upper bound to the actual width. Nevertheless, the well-defined mobility peaks obtained indicate that gas phase mobility analysis is a more discriminating methodology than that previously demonstrated for physically based non-genetic viral diagnostic of enveloped viruses. These results are obtained by analysis of the original cell culture medium containing the virus, purified only by passage through a 0.22 µm filter and by dialysis into a 10 mM aqueous ammonium acetate buffer. We confirmed that this buffer exchange preserves infectivity. Therefore, the 63.7 nm mobility diameter found, although smaller than the 75 nm previously inferred by microscopy, corresponds to the full particle including the envelope.


Assuntos
Bacteriófagos , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus , Diálise Renal
3.
J Aerosol Sci ; 151: 105658, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32952209

RESUMO

A recently described DMA designed for high resolution viral particle analysis (Perez-DMA; Perez-Lorenzo et al, 2020) is modified to decrease the relative peak full width at half maximum (FWHM) below previously achieved ≈3.3%. The electrode radii at the outlet slit (R 1  = 1.01 cm; R 2  = 2 cm) and the working length are almost unchanged (L = 114.9 vs. 116 mm). The laminarization trumpet and the radius of the curve merging the trumpet to the working section are both considerably widened to improve gas flow laminarization. DMA evaluation with salt clusters is improved by reducing the flow resistance at the gas outlet, to reach substantially larger sheath gas flow rates Q near 1700 L/min. Tests with tetraheptylammonium bromide clusters with a center rod diverging at 3° demonstrate FWHM<2.7%, without indications of performance loss due to turbulence even at 1700 L/min. Correcting these high flow rate data for diffusive broadening reveals a maximal DMA FWHM in the limit of non-diffusing particles and zero sample flow, FWHM∞ = 1.8%. An uncorrected peak width approaching 2% is independently demonstrated at much lower flow rates of sheath gas with two recently described bee virus particle standards having singularly narrow size distributions at mean diameters of 38 and 17 nm. Correcting raw 38 nm particle peak widths for broadening due to diffusion and aerosol to sheath gas flow rate ratio q/Q shows an even more ideal response with FWHM∞<1%, where this value includes nonidealities in the DMA as well as possible lack of monodispersity in the viral particles.

4.
Anal Chem ; 92(20): 13896-13903, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32969651

RESUMO

The chronic bee paralysis virus (CBPV), extracted from sick or dead bees, was studied by mobility measurements via electrospray charge reduction with a differential mobility analyzer (DMA) of unusually high resolution. Three different particles are observed. The most abundant one contributes a mobility peak at 38.3 nm, approximately as expected for CBPV. The peak is very sharp in spite of the nonisometric nature of CBPV. We also observe a previously unreported weaker well-resolved shoulder 4.8% more mobile, perhaps due to empty (genome-free) particles. Another sharp peak appearing at approximately 17.51 nm is likely associated with the known icosahedral CBPV satellite (CBPVS). The 17.51 and 38.3 nm peaks offer size and mobility standards much narrower than previously reported at any size above 5 nm, with relative full peak width at half-maximum (FWHM) in mobility approaching 2% (∼1% in diameter). Slight but clear imperfections in the DMA response and the electrospraying process suggest that the real width of the viral mobility distribution is less than 2%.


Assuntos
Abelhas/virologia , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas por Ionização por Electrospray , Vírion/fisiologia , Animais , Tamanho da Partícula , Vírus de RNA/fisiologia
5.
Anal Chem ; 90(20): 12187-12190, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30199239

RESUMO

Analysis of large electrosprayed biopolymers by electrical mobility alone is greatly facilitated by reducing their charge to unity. Here, we combine within a single chamber positive aqueous electrospray (ES), producing multiply charged protein cations, with negative methanolic ES, yielding small singly charged anions. Use of a 100 mM triethylammonium formate buffer in both solutions yields very small drops. The two sprays are decoupled electrostatically by an interposed 50% transparent, grounded metallic grid. This screen is readily crossed by the ions, resulting in substantial charge reduction. In spite of the grid, the aqueous spray is easily destabilized by the presence of anions in the positive ES region. Nonetheless, practical ES stabilization is achieved by using relatively small capillary tips (∼15 µm) in the positive emitter. Protein peaks obtained are as narrow as those previously reported via charge reduction with a radioactive Ni-63 source. Controlling the position of the negative ES permits spanning the full range of charge states, from high natural values to predominantly singly charged ions, even for large proteins such as immunoglobulin G (∼150 kDa).


Assuntos
Imunoglobulina G/análise , Imunoglobulina G/química , Oxirredução , Espectrometria de Massas por Ionização por Electrospray
6.
Anal Chem ; 90(11): 6885-6892, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29694027

RESUMO

Two differential mobility analyzers (DMAs) acting as narrow band mobility filters are coupled in series, with a thermal fragmentation cell placed in between, such that parent ions selected in DMA1 are fragmented in the cell at atmospheric pressure, and their product ions are analyzed on DMA2. Additional mass spectrometer analysis is performed for ion identification purposes. A key feature of the tandem DMA is the short residence time (∼0.2 ms) of ions in the analyzer, compared to tens of milliseconds in drift tube ion mobility spectrometers (IMS). Ion fragmentation within the analyzer and associated mobility tails are therefore negligible for a DMA but not necessarily so in conventional IMS. This advantage of the DMA is demonstrated here by sharply defined product ion mobility peaks. Ambient pressure ion fragmentation has been previously demonstrated by both purely thermal means as well as rapidly oscillating intense electric fields. Our purely thermal fragmentation cell here achieves temperatures up to 700 °C measured inside the heating coil of a cylindrical ceramic heater, through whose somewhat colder axis we direct a beam of mobility-selected ions. We investigate tandem separation of chloride adducts from the explosives EGDN, nitroglycerine (NG), PETN, and RDX and from deprotonated TNT. Atmospheric pressure fragmentation of the first three ions yields one or several previously reported fragments, providing highly distinctive tandem DMA channels for explosive identification at 1 atm. RDX ions had not been previously fragmented at ambient pressure, yet [RDX + Cl]- converts up to 7% (at 300 °C) into a 166 m/ z product. The known high thermal resilience of TNT is confirmed here by its rather modest conversion, even when the ceramic is heated to 700 °C. At this temperature some previously reported fragments are found, but their mobilities are fairly close to each other and to the one of the far more abundant parent ion, making their identification by mobility alone problematic. We anticipate that moderately higher fragmenter temperatures will produce smaller fragments with mobilities readily separated from that of [TNT - H]-.

7.
Anal Chem ; 87(7): 3729-35, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25803189

RESUMO

Many mobility studies (IMS) of electrospray ions with charge states z reduced to unity have shown a singular ability to analyze large protein complexes and viruses, though with wide mobility peaks (fwhm ∼ 20%). Here we confirm that this limitation arises primarily when early charge reduction precedes drop evaporation (suppressing secondary atomization by the usual sequence of many Coulomb explosions). By drying before neutralizing, we achieve a protein fwhm of ∼3.7%. A positively biased electrospraying capillary is coaxial with a cylindrical charge-reduction (CR) chamber coated with radioactive Ni-63 (10 mCi) that fills the CR chamber with a bipolar ionic atmosphere. A screen interposed between the spraying capillary and the CR chamber limits penetration of the neutralizing anions into the electrospray (ES) chamber, precluding destabilization of the ES tip, even when brought very close to the grid to enhance ion transmission. As ES cations cross the grid, driven by their own space charge, they recombine with CR ions reducing their charge state as well as space charge dispersion. The setup is tested with the protein ovalbumin (MW ∼ 44.3 kDa) and its clusters up to the tetramer, by analyzing the charge-reduced ions with a differential mobility analyzer (DMA). At gas sample flow rates of ∼1 L/min, the dominant peaks are singly charged (z = 1). They are widened by clustering of involatile solution impurities, depending on spray quality and solution cleanness, with fwhm as small as 3.7% achieved in desalted and acidified solutions. When using sharp nanospray capillaries, the grid may be removed, resulting in ∼2-fold increased ion transmission. In the absence of the grid, however, spray stability and quality are often compromised, even with capillary tip diameters as small as 30 µm.


Assuntos
Imunoglobulina G/química , Íons/química , Ovalbumina/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Animais , Galinhas , Desenho de Equipamento , Coelhos
8.
Anal Chem ; 85(5): 2710-6, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23317444

RESUMO

The mass spectrometric (MS) complexity associated with the quasi-continuous distribution of mass and charge (m, z) of electrosprayed industrial polymers may be moderated by use of ion mobility spectrometry (IMS) and MS in series. However, when the high charge levels typical of polar polymers stretch the gas phase ions into linear configurations, the mobility Z tends to be closely correlated with m/z, and IMS-MS does not yield spectra more readily interpretable than pure MS spectra. Here we note that the usual high charge states observed in the ESI of polyethylene glycol (PEG) arise because the stretched gas phase chain is able to strongly bind solution cations. We weaken this binding and therefore moderate the charge level by electrospraying in negative mode (NESI). This produces exclusively globular gas phase ions. IMS-MS then readily separates into distinct bands the different z-states, enabling an unambiguous assignment of all ions and simplifying the determination of mass distributions fz(m) for each charge state. The measured probability pz(m) that a polymer ion of given mass m will carry z charges spans a surprisingly narrow z range, each mass being present at most in two charge states. PEG ions of a given charge state z become unstable at a critical mass, below which they shed just one elementary charge, evidently by ion evaporation. We argue that NESI-IMS-MS offers significant analytical advantages over alternative methods previously demonstrated, particularly at increasing masses, when individual ion peaks can no longer be discerned.

9.
J Colloid Interface Sci ; 605: 556-570, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340040

RESUMO

HYPOTHESIS: While the lack of efficient tools yielding controllable uniform saturation ratios (S) has delayed basic experimental heterogeneous nucleation studies, common diffusive condensation particle counters (DCPCs) could fill this gap if their S-variation were minimized by increasing the proportion of sheath gas (σ) surrounding a central core of purified clusters. ANALYSIS: We measure the activation probability P of Tetraheptylammonium Bromide cluster cations (THA-Br)n-1THA+ in Kanomax's fast CPC while controlling S through the saturator and condenser temperatures (Ts, Tc), varying σ, and changing the size (n) of purified salt clusters via high resolution mobility selection. FINDINGS: Experimental curves P(Ts,n) obtained in 1-butanol/air at fixed Tc (13 °C) and variable n and Ts (3 ≤ n ≤ 16; 30 ≤ Ts ≤ 40 °C) rise sharply versus both n and Ts. Their steepness increases five-fold with increasing σ to about σ = 75%, with little effect thereafter. Measurements changing S would yield size distributions of unknown aerosols at fairly high resolution. Comparing P(Ts,n) data with predictions from capillary theory suggests that basic heterogeneous nucleation measurements can be carried out, but instrument improvements are still needed.


Assuntos
Tamanho da Partícula , Aerossóis , Difusão
10.
J Colloid Interface Sci ; 578: 814-824, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32784076

RESUMO

HYPOTHESIS: While the lack of efficient tools yielding controllable uniform supersaturations (S) has delayed basic experimental heterogeneous nucleation studies, common diffusive condensation particle counters (DCPCs) would fill this gap if their present substantial S-variation could be minimized. ANALYSIS: For an initially saturated vapor in two-dimensional (2D) parabolic flow, with discontinuous wall temperature change from Ts to Tc, we calculate the spatial S(x,y) distribution, including the curve Smax(Ψ) of maximal supersaturations versus streamline Ψ. Activation probability curves P(Ts,Tc) are also calculated assuming that nucleation goes from zero to 100% at a critical supersaturation S*. FINDINGS: Two new approaches to achieve a nearly constant Smax(Ψ) are discovered. (i) Sampling only the central 50% of the flow is most effective because the [dSmax(Ψ)/Dψ]Ψ=0 = 0. This advantage is lost in the more common axisymmetric configuration. (ii) When the ratio Le = α/D between gas-vapor heat and mass diffusivities is unity, we find the quite general property that Smax(Ψ) is exactly constant. This singular condition may be achieved in special vapor/gas mixtures (ethanol/CO2; methanol/CO2; H2O/air, all seeded with lighter or heavier gases). With greater generality, Le = 1 also in turbulent flows. Therefore, basic heterogeneous nucleation studies with newly available seed particles of fixed size and composition are viable in DCPCs.

11.
J Am Soc Mass Spectrom ; 20(2): 287-94, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19013080

RESUMO

We determine the sensitivity of several commercial atmospheric pressure ionization mass spectrometers towards ambient vapors, ionized by contact with an electrospray of acidified or ammoniated solvent, a technique often referred to as secondary electrospray ionization (SESI). Although a record limit of detection of 0.2 x 10(-12) atmospheres (0.2 ppt) is found for explosives such as PETN and 0.4 ppt for TNT (without preconcentration), this still implies the need for some 10(8)-10(9) vapor molecules/s for positive identification of explosives. This extremely inefficient use of sample is partly due to low charging probability ( approximately 10(-4)), finite ion transmission, and counting probability in the mass spectrometer (1/10 in quadrupoles), and a variable combination of duty cycle and background noise responsible typically for a 10(3) factor loss of useful signal.


Assuntos
Substâncias Explosivas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Pressão Atmosférica , Tetranitrato de Pentaeritritol/análise , Trinitrotolueno/análise , Incerteza
12.
J Am Soc Mass Spectrom ; 30(6): 1082-1091, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972728

RESUMO

We study the space charge limited maximal current density j″ of mobility-selected ions that can be transmitted in ion mobility spectrometry (IMS). Theory and experiments focus on differential mobility analyzers (DMAs), but are readily generalizable to other IMS devices. Repulsion between the ions in the cloud leads to beam spreading, with significant broadening once the ion number density n becomes comparable to the space charge saturation limit nsat = εoEo/(eΔ). Δ is the distance traversed by the ions in the direction of an externally imposed electric field Eo, and e is the charge on each ion. For ions of electrical mobility Z, j″ is then limited below j″sat = ZEoensat = ZεoEo2/Δ. A theory including diffusion and space charge effects is developed that reduces to Burgers' exactly solvable equation. The theory is tested in experiments with room temperature electrosprays (ES) of 100 mM [ethyl3N+-formate-] in methanol. This spray produces primarily a single ionic species at very high initial concentration n, which may be tuned above or below nsat by varying the distance from the ES emitter to the inlet slit of the DMA. Mobility-selected ion densities n > 3.108 ions/cm3 are achieved, with n~nsat, and with drastically broadened mobility peak shapes having the approximate top hat-predicted shapes. However, the largest n values approaching nsat are not quantitatively measurable because the densest sprays do not fill the outlet slit length. Graphical Abstract .

13.
Anal Chem ; 80(21): 8210-5, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18821733

RESUMO

Real time analysis of human breath is achieved in an atmospheric pressure ionization mass spectrometer (API-MS) by negatively charging exhaled vapors via contact with an electrospray cloud. The spectrum observed is dominated by a wide range of deprotonated fatty acids, including saturated chains up to C14. Above C14, the background from cutaneous sources becomes dominant. We also tentatively identify a series of unsaturated fatty acids (C7-C10), ketomonocarboxylic acids (C6-C10), and a family of aldehydes. The ionization probability of large fatty acids increases drastically when the humidity changes from 20% to 95%. Accordingly, distinguishing lung vapors (humid) from those in the background (dry) requires special precautions. Estimated fatty acid vapor concentrations in breath based on our measurements ( approximately 100 ppt) are in fair agreement with values expected from blood concentrations in the range for which data are available (C3-C6).


Assuntos
Pressão Atmosférica , Ácidos Graxos/análise , Ácidos Graxos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Testes Respiratórios , Humanos , Canais Iônicos/química , Sistemas On-Line , Probabilidade , Volatilização
14.
J Phys Chem B ; 112(39): 12401-7, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18698709

RESUMO

An effort to systematize published and new data on the surface tension gamma of ionic liquids (ILs) is based on the hypothesis that the dimensionless surface tension parameter gamma V v (2/3)/ kT is a function of the void fraction x v = V v/ V m. The void volume V v is defined as the difference between the liquid volume V m occupied by an ion pair (known from cationic and anionic masses and liquid density measurements) and the sum V (+) + V (-) of the cationic and anionic volumes (known from crystal structures), while kT is the thermal energy. Our hypothesis that gamma V m (2/3)/ kT = G( x v) is initially based on cavity theory. It is then refined based on periodic lattice modeling, which reveals that the number N of voids per unit cell (hence the dimensionless surface tension) must depend on x v. Testing our hypothesis against data for the five ILs for which surface tension and density data are available over a wide range of temperatures collapses all of these data almost on a single curve G( x v), provided that slight (4%) self-consistent modifications are introduced on published crystallographic data for V (+) and V (-). An attempt to correlate the surface tension vs temperature data available for inorganic molten salts is similarly successful, but at the expense of larger shifts on the published ionic radii (8.8% for K; 3.3% for I). The collapsed G( x v) curves for ILs and inorganic salts do not overlap anywhere on x v space, and appear to be different from each other. The existence of a relation between gamma and x v is rationalized with a simple capillary model minimizing the energy. Our success in correlating surface tension to void fraction may apply also to other liquid properties.

15.
J Am Soc Mass Spectrom ; 28(8): 1506-1517, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28560563

RESUMO

The differential mobility analyzer (DMA) is a narrow-band linear ion mobility filter operating at atmospheric pressure. It combines in series with a quadrupole mass spectrometer (Q-MS) for mobility/mass analysis, greatly reducing chemical noise in selected ion monitoring. However, the large flow rate of drift gas (~1000 L/min) required by DMAs complicates the achievement of high gas purity. Additionally, the symmetry of the drying counterflow gas at the interface of many commercial MS instruments, is degraded by the lateral motion of the drift gas at the DMA entrance slit. As a result, DMA mobility peaks often exhibit tails due to the attachment of impurity vapors, either (1) to the reagent ion within the separation cell, or (2) to the analyte of interest in the ionization region. In order to greatly increase the noise-suppression capacity of the DMA, we describe various vapor-removal schemes and measure the resulting increase in the tailing ratio, (TR = signal at the peak maximum over signal two half-widths away from this maximum). Here we develop a low-outgassing DMA circuit connected to a mass spectrometer, and test it with three ionization sources (APCI, Desolvating-nano ESI, and Desolvating low flow SESI). While prior TR values were in the range 100-1000, the three new sources achieve TR ~ 105. The SESI source has been optimized for maximum sensitivity, delivering an unprecedented gain for TNT of 190 counts/fg, equivalent to an ionization efficiency of one out of 140 neutral molecules. Graphical Abstract ᅟ.

16.
J Colloid Interface Sci ; 293(2): 384-93, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16054154

RESUMO

A technique for generating charged aerosols of polystyrene (pSty) with narrow size distributions has been developed. It is based on electrospraying commercial narrow mass standards of pSty dissolved in l-methyl-2-pyrrolidone (NMP) seeded with the newly synthesized salt dimethyl ammonium formate. This salt imparts a much larger electrical conductivity than previously known NMP electrolytes, leading to higher quality sprays with greatly reduced attachment of impurities. Controlling the solute concentration enables forming polystyrene particles containing from one up to more than ten single polystyrene molecules, whereby 4 mass standards with molecular weights from 9200 up to 96,000 g/mol yield particles covering densely the diameter range from 3 to 11 nm. Combined mobility and mass measurement with a differential mobility analyzer and a mass spectrometer in tandem are carried out with a pSty sample 9200 amu in molecular weight. They fix directly the mass versus mobility relation near 9200 amu, and indirectly for the other standards and their clusters. The apparent particle density resulting from mobility versus mass data agrees with the bulk density of the polymer, indicating that the particles are dense and spherical. Although these standards have been studied only in gaseous suspension, their injection in liquids such as water where pSty is insoluble should keep them spherical.

17.
J Am Soc Mass Spectrom ; 16(5): 717-32, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15862773

RESUMO

Multiply charged electrospray ions from concentrated solutions of Heptyl4N+Br- (designated A+B- hereafter) in formamide are analyzed mass spectrometrically (MS) following mobility selection in ambient air in a differential mobility analyzer (DMA). Most of the sharp mobility peaks seen are identified as (AB)(n)A+ clusters, with 0 < or = n < ot = 5. One anomalously abundant and mobile ion is identified as NH4+(AB)4. Six ions in the (AB)n(A+)2 series are also identified, completing and correcting earlier mobility data for singly and doubly charged ions up to masses of almost 9000 Da. The more mobile of two broad humps seen in the mobility spectrum includes m/z values approximately from 2500 up to 12,000 Da. It is formed primarily by multiply charged (AB)n(A+)z clusters with multiple ammonium bromide adducts. Because of overlapping of many peaks of different m/z and charge state z, only a few individual species can be identified by MS alone in this highly congested region. However, the spectral simplification brought about by mobility selection upstream of the MS reveals a series of broad modulations in m/z space, with all ions resolved in the second, third, ...sixth modulation being in charge states z = 2, 3, ...6, respectively. Extrapolation of this trend beyond the sixth wave fixes the ion charge state (in some cases up to z = 15) and mass (beyond m = 175,000 u). This wavy structure had been previously observed and explained in terms of ion evaporation kinetics from volatile drops, though without mass identification. All observations indicate that the clusters are formed as charged residues, but their charge state is fixed by the Iribarne-Thomson ion evaporation mechanism. Consequently, the measured curve of cluster diameter versus z yields the two parameters governing ion evaporation kinetics. Clusters with z > 1 and electrical mobility Z > 0.495 cm2/V/s are metastable and evaporate a singly charged cluster, probably (AB)2A+, between the DMA and the MS. Plotting the electrical mobilities Z of the clusters in the form (z/Z)1/2 versus m(1/3) (both proportional to cluster diameter) collapse the data for all cluster sizes and charge states into one single straight line for Z below 0.495 cm2/V/s. This linear relation reveals a uniform apparent cluster density of 0.935 g/cm3 and an effective hard-sphere diameter of the air molecules of 0.44 nm. An anomalous mobility increase is observed at diameters below 3 nm.


Assuntos
Brometos/análise , Brometos/química , Formamidas/análise , Formamidas/química , Modelos Químicos , Espectrometria de Massas por Ionização por Electrospray/métodos , Simulação por Computador , Compostos de Amônio Quaternário
18.
J Phys Chem B ; 109(22): 11173-9, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16852363

RESUMO

The rate of ion evaporation from the surface of electrically charged liquid drops may be inferred from observations of the minimum drop charge q present on drops of a given radius R. This critical relation q(R) is measured here from the fossil solid residues left by the drops after complete solvent evaporation. We obtain mobility distributions of singly charged clusters formed by charge-reduced electrosprays of tetra-n-alkylammonium salts (C(n)()H(2)(n)()(+1))(4)N(+) (n = 2-10) dissolved in formamide. These distributions exhibit modulated structures, with each wave being associated with an initial charge state of the clusters prior to charge reduction, from which critical q(R) relations follow. For n from 4 to 7, the behavior is weakly dependent on the length of the alkyl chain. Above n = 7, there is a marked increase in solvation energy of the alkylammonium ions, but drop curvature effects contribute a compensating reduction of the energy barrier for ionization. This curvature effect increases monotonically with n and is probably associated with surface activity. Few clear modulations are seen for n < 3, perhaps because of the decreased role of surface activity in transferring solute into very small drops during the Coulombic breakup of larger drops. For this reason, extension of this technique to small inorganic salts is problematic.

19.
J Am Soc Mass Spectrom ; 25(8): 1332-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24924517

RESUMO

Ion mobility mass spectrometry (IMS-MS) is used to investigate the abundance pattern, n(z)(m) of poly-(ethyleneglycol) (PEG) electrosprayed from water/methanol as a function of mass and charge state. We examine n(z)(m) patterns from a diversity of solution cations, primarily dimethylammonium and triethylammonium. The ability of PEG chains to initially attach to various cations in the spraying chamber, and to retain them (or not) on entering the MS, provide valuable clues on the ionization mechanism. Single chains form in highly charged and extended shapes in most buffers. But the high initial charge they hold under atmospheric pressure is lost on transit to the vacuum system for large cations. In contrast, aggregates of two or more chains carry in all buffers at most the Rayleigh charge of a water drop of the same volume. This shows either that they form via Dole's charge residue mechanism, or that highly charged and extended aggregates are ripped apart by Coulombic repulsion. IMS-IMS experiments in He confirm these findings, and provide new mechanistic insights on the stability of aggregates. When collisionally activated, initially globular dimers are stable. However, slightly nonglobular dimers projecting out a linear appendix are segregated into two monomeric chains. The breakup of a charged dimer is therefore a multi-step process, similar to the Fenn-Consta polymer extrusion mechanism. The highest activation barrier is associated to the first step, where a short chain segment carrying a single charge escapes (ion-evaporates) from a charged drop, leading then to gradual field extrusion of the whole chain out of the drop.


Assuntos
Dimetilaminas/química , Formiatos/química , Indicadores e Reagentes/química , Modelos Moleculares , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Algoritmos , Pressão Atmosférica , Simulação de Dinâmica Molecular , Estrutura Molecular , Peso Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Vácuo
20.
J Am Soc Mass Spectrom ; 24(12): 1872-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24048890

RESUMO

The electrical mobilities of multiply-charged nanodrops of the ionic liquid 1-ethyl, 3-methylimidazolium dicyanamide (EMI-N[CN]2) were accurately measured in air at 20 °C for mass-selected clusters of composition [EMI-N[CN]2] n [EMI(+)] z , with 2 ≤ n ≤ 369 and 1 ≤ z ≤ 10. We confirm prior reports that the mobility Z of a globular ion of mass m is given approximately by the modified Stokes-Millikan law for spheres, Z = Z SM,mod (d m + d g , z, m), where d m = (6m/πρ)(1/3) is the nanodrop mass-diameter based on the density ρ of the liquid (corrected for the capillary compression and electrostatic deformation of the nanodrop), and d g is an effective air molecule diameter. There is however a measurable (up to 7%) and systematic z-dependent departure of Z from Z SM,mod . As theoretically expected at small ε (*) , this effect is accurately described by a simple correction factor of the form Z/Z SM,mod = δ(1 - ßε (*)), where kTε (*) is the potential energy due to the ion-induced dipole (polarization) attraction between a perfectly-conducting charged nanodrop and a polarized neutral gas-molecule at a distance (d m + d g )/2 from its center. An excellent fit of this model to hundreds of data points is found for d g ≈ 0.26 nm, ß ≈ 0.36, and δ ≈ 0.954. Accounting for the effect of polarization decreases d g considerably with respect to values inferred from earlier nanodrop measurements that ignored this effect. In addition, and in spite of ambiguities in the mobility calibration scale, the measured constant δ smaller than unity increases Millikan's drag enhancement factor from the accepted value ξ m ≈ 1.36 to the new value ξ ≈ ξ m /δ ≈ 1.42 ± 0.03.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA