Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 73, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194142

RESUMO

Vulvovaginal candidiasis (VVC) affects approximately 30-50% of women at least once during their lifetime, causing uncomfortable symptoms and limitations in their daily quality of life. Antifungal therapy is not very effective, does not prevent recurrencies and usually causes side effects. Therefore, alternative therapies are urgently needed. The goal of this work was to investigate the potential benefits of using mannan oligosaccharides (MOS) extracts together with a Lactobacillus sp. pool, composed by the most significant species present in the vaginal environment, to prevent infections by Candida albicans. Microbial growth of isolated strains of the main vaginal lactobacilli and Candida strains was assessed in the presence of MOS, to screen their impact upon growth. A pool of the lactobacilli was then tested against C. albicans in competition and prophylaxis studies; bacterial and yeast cell numbers were quantified in specific time points, and the above-mentioned studies were assessed in simulated vaginal fluid (SVF). Finally, adhesion to vaginal epithelial cells (HeLa) was also evaluated, once again resorting to simultaneous exposure (competition) or prophylaxis assays, aiming to measure the effect of MOS presence in pathogen adherence. Results demonstrated that MOS extracts have potential to prevent vaginal candidiasis in synergy with vaginal lactobacilli, with improved results than those obtained when using lactobacilli alone. KEY POINTS: Potential benefits of MOS extracts with vaginal lactobacilli to prevent C. albicans infections. MOS impacts on growth of vaginal lactobacilli pool and C. albicans in SVF. MOS extracts in synergy with L. crispatus inhibit C. albicans adhesion in HeLa cells.


Assuntos
Candida albicans , Candidíase Vulvovaginal , Feminino , Humanos , Mananas , Células HeLa , Qualidade de Vida , Candidíase Vulvovaginal/prevenção & controle , Lactobacillus
2.
Biomolecules ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397470

RESUMO

Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as ß-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.


Assuntos
Saccharum , Humanos , Saccharum/metabolismo , Células CACO-2 , Anti-Hipertensivos/farmacologia , alfa-Glucosidases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Açúcares , Lipídeos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Pathogens ; 12(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37513732

RESUMO

Urinary tract infections (UTIs) are a common public health problem, mainly caused by uropathogenic Escherichia coli (UPEC). Patients with chronic UTIs are usually treated with long-acting prophylactic antibiotics, which promotes the development of antibiotic-resistant UPEC strains and may complicate their long-term management. D-mannose and extracts rich in D-mannose such as mannan oligosaccharides (MOS; D-mannose oligomers) are promising alternatives to antibiotic prophylaxis due to their ability to inhibit bacterial adhesion to urothelial cells and, therefore, infection. This highlights the therapeutic potential and commercial value of using them as health supplements. Studies on the effect of MOS in UTIs are, however, scarce. Aiming to evaluate the potential benefits of using MOS extracts in UTIs prophylaxis, their ability to inhibit the adhesion of UPEC to urothelial cells and its mechanism of action were assessed. Additionally, the expression levels of the pro-inflammatory marker interleukin 6 (IL-6) were also evaluated. After characterizing their cytotoxic profiles, the preliminary results indicated that MOS extracts have potential to be used for the handling of UTIs and demonstrated that the mechanism through which they inhibit bacterial adhesion is through the competitive inhibition of FimH adhesins through the action of mannose, validated by a bacterial growth impact assessment.

4.
Sci Total Environ ; 647: 1508-1517, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180356

RESUMO

Iron deficiency in crops is usually prevented and cured by the application of synthetic Fe chelates such as EDTA/Fe and the o,o-EDDHA/Fe. However their persistence in soil calls for the implementation of new alternatives that present less of a risk to the environment. This study therefore evaluated the biodegradable chelating agent [S,S]-EDDS as a new source for Fe fertilisation in calcareous soils in relation to its chemical reactivity. The suitability of [S,S]-EDDS/Fe as an Fe fertiliser in a calcareous soil was investigated and compared to the traditional synthetic chelates EDTA/Fe and o,o-EDDHA/Fe. Plant experiments with soybean (Glycine max), 57Fe isotopic labelling, and batch incubations were conducted in a calcareous soil. The Fe concentration of plants treated with [S,S]-EDDS/Fe was similar to those treated with EDTA/Fe. A similar Fe concentration to the o,o-EDDHA/Fe treatment was achieved using a double dose of [S,S]-EDDS/Fe. Despite the degradation of [S,S]-EDDS limiting the durability of [S,S]-EDDS/Fe in soil, the Fe bound to the degradation products may be a determining factor in improving Fe uptake and translocation to leaves in plants treated with [S,S]-EDDS/Fe compared to other Fe sources. Speciation studies by modelling and batch experiments also supported the lower reactivity of [S,S]-EDDS/Fe with calcium compared to that of EDTA/Fe, possibly contributing to the permanence of [S,S]-EDDS/Fe in the calcareous soil. This study demonstrated for the first time, that [S,S]-EDDS may be an environmentally sustainable alternative to traditional synthetic chelating agents such as EDTA or o,o-EDDHA for curing Fe chlorosis in susceptible plants in calcareous soil.

5.
Sci Total Environ ; 682: 779-799, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31146074

RESUMO

In order to address the ever-increasing problem of the world's population food needs, the optimization of farming crops yield, the combat of iron deficiency in plants (chlorosis) and the elimination/reduction of crop pathogens are of key challenges to solve. Traditional ways of solving these problems are either unpractical on a large scale (e.g. use of manure) or are not environmental friendly (e.g. application of iron-synthetic fertilizers or indiscriminate use of pesticides). Therefore, the search for greener substitutes, such as the application of siderophores of bacterial source or the use of plant-growth promoting bacteria (PGPB), is presented as a very promising alternative to enhance yield of crops and performance. However, the use of microorganisms is not a risk-free solution and the potential biohazards associated with the utilization of bacteria in agriculture should be considered. The present work gives a current overview of the main mechanisms associated with the use of bacteria in the promotion of plant growth. The potentiality of several bacterial genera (Azotobacter, Azospirillum, Bacillus, Pantoea, Pseudomonas and Rhizobium) regarding to siderophore production capacity and other plant growth-promoting properties are presented. In addition, the field performance of these bacteria genera as well as the biosafety aspects related with their use for agricultural proposes are reviewed and discussed.


Assuntos
Agricultura/métodos , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Desenvolvimento Vegetal , Raízes de Plantas
6.
Front Plant Sci ; 10: 1335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781134

RESUMO

Currently, fertilization with synthetic chelates is the most effective agricultural practice to prevent iron (Fe) deficiencies in crops, especially in calcareous soils. Because these compounds are not biodegradable, they are persistent in the environment, and so, there is the risk of metal leaching from the soils. Thus, new, more environment-friendly efficient solutions are needed to solve iron-deficiency-induced chlorosis (IDIC) in crops grown in calcareous soils. Therefore, the central aim of this work was to prepare new freeze-dried Fe products, using a biotechnological-based process, from two siderophores bacterial (Azotobacter vinelandii and Bacillus subtilis) cultures (which previously evidenced high Fe complexation ability at pH 9) and test their capacity for amending IDIC of soybean grown in calcareous soils. Results have shown that A. vinelandii iron fertilizer was more stable and interacted less with calcareous soils and its components than B. subtilis one. This behavior was noticeable in pot experiments where chlorotic soybean plants were treated with both fertilizer products. Plants treated with A. vinelandii fertilizer responded more significantly than those treated with B. subtilis one, when evaluated by their growth (20% more dry mass than negative control) and chlorophyll development (30% higher chlorophyll index than negative control) and in most parameters similar to the positive control, ethylenediamine-di(o-hydroxyphenylacetic acid). On average, Fe content was also higher in A. vinelandii-treated plants than on B. subtilis-treated ones. Results suggest that this new siderophore-based formulation product, prepared from A. vinelandii culture, can be regarded as a possible viable alternative for replacing the current nongreen Fe-chelating fertilizers and may envisage a sustainable and environment-friendly mending IDIC of soybean plants grown in calcareous soils.

7.
AMB Express ; 9(1): 78, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31139942

RESUMO

Iron deficiency is one of the main causes of chlorosis in plants, which leads to losses in field crops quality and yield. The use of synthetic chelates to prevent or correct iron-deficiency is not satisfactory mainly due to their poor biodegradability. The present work aimed to search suitable microorganisms to produce alternative, environment-friendly iron-chelating agents (siderophores). For this purpose, the performance of five bacteria (Azotobacter vinelandii, Bacillus megaterium, Bacillus subtilis, Pantoea allii and Rhizobium radiobacter) was evaluated, regarding siderophore production kinetics, level of siderophore production (determined by chrome azurol S, CAS method), type of siderophore produced (using Arnow and Csaky's tests) and iron-chelating capacity at pH 9.0. All bacteria were in stationary phase at 24 h, except A. vinelandii (at 72 h) and produced the maximum siderophore amount (80-140 µmol L-1) between 24 and 48 h, with the exception of A. vinelandii (at 72 h). The analysis of culture filtrates revealed the presence of catechol-type siderophores for B. subtilis and R. radiobacter and hydroxamate-type siderophores for B. megaterium and P. allii. In the case of A. vinelandii, both siderophore-types (catechol and hydroxamates) were detected. The highest iron-chelating capacity, at pH 9.0, was obtained by B. megaterium followed by B. subtilis and A. vinelandii. Therefore, these three bacteria strains are the most promising bacteria for siderophore production and chlorosis correction under alkaline conditions.

8.
Sci Total Environ ; 647: 1586-1593, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180362

RESUMO

In order to find new greener solutions for iron (Fe) induced chlorosis, two new chelating agents, N,N-dihydroxy-N,N'-diisopropylhexanediamide (DPH) and Azotochelin (AZO), were assessed for its effectiveness in mending induced chlorosis in soybean (Glycine max). DPH-Fe and AZO-Fe complexes were firstly tested for their soil interactions and capability to maintain Fe in a bioavailable form. Secondly, 57Fe-chelates of DPH and AZO were applied to the soil in a pot experiment with chlorotic soybean plants. Their growth, SPAD chlorophyll index, and the Fe concentration in plant tissues and the remaining soil were evaluated. An isotope deconvolution analysis by using the concentration of the Fe isotopes was used to distinguish the Fe coming from soil and from the 57Fe labelled fertilizer treatments. AZO and DPH have shown different interactions with soil and its components, with AZO showing less interaction than DPH. The application of AZO and DPH resulted in SPAD increase and Fe content. However, it was found that the Fe in plants had not come from the fertilizer application, but instead from natural sources. This is likely due to dissolution phenomena aided by the chelates added. Overall, AZO and DPH have shown good results in amending Fe induced chlorosis in calcareous soils and for this reason should be regarded as good green-candidates for Fe plant nutrition in calcareous soils.


Assuntos
Glycine max/fisiologia , Hexanos/química , Quelantes de Ferro/química , Lisina/análogos & derivados , Ferro , Lisina/química , Solo/química , Glycine max/crescimento & desenvolvimento
9.
Chemosphere ; 208: 390-398, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29885505

RESUMO

Several tools have been developed and applied to evaluate the metal pollution status of sediments and predict their potential ecological risk assessment. To date, a comprehensive relationship between the information given by these sediment tools for predicting metal bioavailability and the effective toxicity observed is lacking. In this work, the possible inter-correlations between the data outcoming from using several qualitative evaluation tools of the sediment contamination (contamination factor, CF, the enrichment factor, EF, or the geoaccumulation index, Igeo), metal speciation on sediments (evaluated by the modified BCR sequential extraction procedure) and free metal concentrations in pore waters were studied. It was also our aim to evaluate if these assessment tools could be used for predicting the pore waters toxicity data as toxicity proxy. Principal component analysis and cluster analysis revealed that two quality indices used (CF and EF) were highly correlatable with the more labile fractions from BCR sediment speciation. However, neither of these parameters did correlate with the toxicity of pore waters measured by the chronic toxicity (72 h) in Pseudokirchneriella subcapitata. In contrast, the toxic effects of the given total metal load in sediments were better evaluated by using an additive metal approach using pore water free metal concentrations.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Disponibilidade Biológica , Clorófitas , Análise por Conglomerados , Poluição Ambiental/análise , Sedimentos Geológicos/análise , Metais Pesados/toxicidade , Porosidade , Análise de Componente Principal , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Environ Pollut ; 223: 517-523, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28159400

RESUMO

Scientifically sound risk assessment strategies and derivations of environmental quality standards for metals present in freshwater environments are currently hampered by insufficient chronic toxicity data collected from natural ecosystems, as well as inadequate information on metal speciation. Thus, the aim of the present study was to evaluate the impact of freshwater containing multiple metals (Cd, Cr, Cu, Ni, Pb and Zn) on the chronic toxicity (72h) to the alga Pseudokirchneriella subcapitata and compare the observed toxicity results to the total and free metal concentration of the samples. Based on the information obtained herein, an additive inhibitory free multi-metal ion concentration index, calculated as the sum of the equivalent toxicities to the free metal ion concentration of each sample, was developed. The proposed index was well correlated to the observed chronic toxicity results, indicating that the concentration addition, when expressed as the free-ion activity, can be considered a reliable indicator for the evaluation of ecological risk assessments for natural waters containing multiple metals.


Assuntos
Clorófitas/efeitos dos fármacos , Ecossistema , Monitoramento Ambiental , Água Doce , Metais Pesados/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais/toxicidade , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA