Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(22): 12325-12336, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953281

RESUMO

Telomeres are nucleoprotein complexes that protect the chromosome-ends from eliciting DNA repair while ensuring their complete duplication. Pot1 is a subunit of telomere capping complex that binds to the G-rich overhang and inhibits the activation of DNA damage checkpoints. In this study, we explore new functions of fission yeast Pot1 by using a pot1-1 temperature sensitive mutant. We show that pot1 inactivation impairs telomere DNA replication resulting in the accumulation of ssDNA leading to the complete loss of telomeric DNA. Recruitment of Stn1 to telomeres, an auxiliary factor of DNA lagging strand synthesis, is reduced in pot1-1 mutants and overexpression of Stn1 rescues loss of telomeres and cell viability at restrictive temperature. We propose that Pot1 plays a crucial function in telomere DNA replication by recruiting Stn1-Ten1 and Polα-primase complex to telomeres via Tpz1, thus promoting lagging-strand DNA synthesis at stalled replication forks.


Assuntos
Cromossomos Fúngicos , Replicação do DNA , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Telômero , Proteínas de Ligação a DNA/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Cromossomos Fúngicos/metabolismo
2.
EMBO J ; 38(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796050

RESUMO

Telomeres, the protective ends of eukaryotic chromosomes, are replicated through concerted actions of conventional DNA polymerases and elongated by telomerase, but the regulation of this process is not fully understood. Telomere replication requires (Ctc1/Cdc13)-Stn1-Ten1, a telomeric ssDNA-binding complex homologous to RPA Here, we show that the evolutionarily conserved phosphatase Ssu72 is responsible for terminating the cycle of telomere replication in fission yeast. Ssu72 controls the recruitment of Stn1 to telomeres by regulating Stn1 phosphorylation at Ser74, a residue located within its conserved OB-fold domain. Consequently, ssu72∆ mutants are defective in telomere replication and exhibit long 3'-ssDNA overhangs, indicative of defective lagging-strand DNA synthesis. We also show that hSSU72 regulates telomerase activation in human cells by controlling recruitment of hSTN1 to telomeres. These results reveal a previously unknown yet conserved role for the phosphatase SSU72, whereby this enzyme controls telomere homeostasis by activating lagging-strand DNA synthesis, thus terminating the cycle of telomere replication.


Assuntos
Replicação do DNA , Evolução Molecular , Fosfoproteínas Fosfatases/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Homeostase do Telômero , Telômero/genética , Sequência de Aminoácidos , Proteínas de Transporte/genética , Sequência Conservada , Humanos , Fosforilação , Schizosaccharomyces/enzimologia , Homologia de Sequência
3.
Proc Natl Acad Sci U S A ; 117(26): 15066-15074, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554492

RESUMO

Cancer incidence increases exponentially with age when human telomeres are shorter. Similarly, telomerase reverse transcriptase (tert) mutant zebrafish have premature short telomeres and anticipate cancer incidence to younger ages. However, because short telomeres constitute a road block to cell proliferation, telomere shortening is currently viewed as a tumor suppressor mechanism and should protect from cancer. This conundrum is not fully understood. In our current study, we report that telomere shortening promotes cancer in a noncell autonomous manner. Using zebrafish chimeras, we show increased incidence of invasive melanoma when wild-type (WT) tumors are generated in tert mutant zebrafish. Tissues adjacent to melanoma lesions (skin) and distant organs (intestine) in tert mutants exhibited higher levels of senescence and inflammation. In addition, we transferred second generation (G2) tert blastula cells into WT to produce embryo chimeras. Cells with very short telomeres induced increased tumor necrosis factor1-α (TNF1-α) expression and senescence in larval tissues in a noncell autonomous manner, creating an inflammatory environment. Considering that inflammation is protumorigenic, we transplanted melanoma-derived cells into G2 tert zebrafish embryos and observed that tissue environment with short telomeres leads to increased tumor development. To test if inflammation was necessary for this effect, we treated melanoma transplants with nonsteroid anti-inflammatory drugs and show that higher melanoma dissemination can be averted. Thus, apart from the cell autonomous role of short telomeres in contributing to genome instability, we propose that telomere shortening with age causes systemic chronic inflammation leading to increased tumor incidence.


Assuntos
Melanoma/metabolismo , Telômero/metabolismo , Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Melanoma/genética , Melanoma/imunologia , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Encurtamento do Telômero , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Mol Ecol ; 31(23): 5979-5992, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34826177

RESUMO

Telomeres and telomerase prevent the continuous erosion of chromosome-ends caused by lifelong cell division. Shortened telomeres are associated with age-related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well-defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter-lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally-driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.


Assuntos
Ciprinodontiformes , Fundulidae , Animais , Feminino , Masculino , Longevidade/genética , Fundulidae/genética , Encurtamento do Telômero/genética , Ciprinodontiformes/genética , Telômero/genética
5.
J Am Chem Soc ; 142(24): 10869-10880, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32456416

RESUMO

The ability to create ways to control drug activation at specific tissues while sparing healthy tissues remains a major challenge. The administration of exogenous target-specific triggers offers the potential for traceless release of active drugs on tumor sites from antibody-drug conjugates (ADCs) and caged prodrugs. We have developed a metal-mediated bond-cleavage reaction that uses platinum complexes [K2PtCl4 or Cisplatin (CisPt)] for drug activation. Key to the success of the reaction is a water-promoted activation process that triggers the reactivity of the platinum complexes. Under these conditions, the decaging of pentynoyl tertiary amides and N-propargyls occurs rapidly in aqueous systems. In cells, the protected analogues of cytotoxic drugs 5-fluorouracil (5-FU) and monomethyl auristatin E (MMAE) are partially activated by nontoxic amounts of platinum salts. Additionally, a noninternalizing ADC built with a pentynoyl traceless linker that features a tertiary amide protected MMAE was also decaged in the presence of platinum salts for extracellular drug release in cancer cells. Finally, CisPt-mediated prodrug activation of a propargyl derivative of 5-FU was shown in a colorectal zebrafish xenograft model that led to significant reductions in tumor size. Overall, our results reveal a new metal-based cleavable reaction that expands the application of platinum complexes beyond those in catalysis and cancer therapy.


Assuntos
Amidas/química , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Morfinanos/química , Platina/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Peixe-Zebra
6.
Mol Cell ; 46(6): 797-808, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22633956

RESUMO

The dramatic telomerase-dependent overelongation of telomeres in cells lacking Taz1 (ortholog of human TRF1/TRF2) or Rap1 implicates these proteins in restraint of telomerase activity. However, the modes by which these proteins regulate telomerase remain mysterious. Here we show that the mechanisms underlying excessive telomerase activity differ markedly between taz1Δ and rap1Δ strains. Despite allowing elevated telomerase access, rap1Δ telomeres are processed and synthesized in a cell-cycle-constrained manner similar to that of wild-type cells. In contrast, taz1Δ telomeres are processed with little cell-cycle dependency and recruit telomerase over an abnormally wide range of cell-cycle stages. Furthermore, although taz1Δ telomeres experience transient attrition mediated by replication fork stalling, this is balanced not only by temporal expansion of the telomerase activity period, but also by markedly increased recruitment of telomerase and its accessory factor Est1, suggesting that stalled forks generate robust substrates for telomerase.


Assuntos
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Replicação do DNA , Humanos , Proteínas de Schizosaccharomyces pombe/genética , Telomerase/genética , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/genética
7.
Proc Natl Acad Sci U S A ; 114(39): E8234-E8243, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28835536

RESUMO

Cancer is as unique as the person fighting it. With the exception of a few biomarker-driven therapies, patients go through rounds of trial-and-error approaches to find the best treatment. Using patient-derived cell lines, we show that zebrafish larvae xenotransplants constitute a fast and highly sensitive in vivo model for differential therapy response, with resolution to reveal intratumor functional cancer heterogeneity. We screened international colorectal cancer therapeutic guidelines and determined distinct functional tumor behaviors (proliferation, metastasis, and angiogenesis) and differential sensitivities to standard therapy. We observed a general higher sensitivity to FOLFIRI [5-fluorouracil(FU)+irinotecan+folinic acid] than to FOLFOX (5-FU+oxaliplatin+folinic acid), not only between isogenic tumors but also within the same tumor. We directly compared zebrafish xenografts with mouse xenografts and show that relative sensitivities obtained in zebrafish are maintained in the rodent model. Our data also illustrate how KRAS mutations can provide proliferation advantages in relation to KRASWT and how chemotherapy can unbalance this advantage, selecting for a minor clone resistant to chemotherapy. Zebrafish xenografts provide remarkable resolution to measure Cetuximab sensitivity. Finally, we demonstrate the feasibility of using primary patient samples to generate zebrafish patient-derived xenografts (zPDX) and provide proof-of-concept experiments that compare response to chemotherapy and biological therapies between patients and zPDX. Altogether, our results suggest that zebrafish larvae xenografts constitute a promising fast assay for precision medicine, bridging the gap between genotype and phenotype in an in vivo setting.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Peixe-Zebra/metabolismo , Animais , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Fluoruracila/farmacologia , Humanos , Irinotecano , Leucovorina/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
PLoS Genet ; 13(3): e1006652, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28288153

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1003214.].

9.
PLoS Genet ; 12(1): e1005798, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26789415

RESUMO

Telomeres shorten with each cell division and telomere dysfunction is a recognized hallmark of aging. Tissue proliferation is expected to dictate the rate at which telomeres shorten. We set out to test whether proliferative tissues age faster than non-proliferative due to telomere shortening during zebrafish aging. We performed a prospective study linking telomere length to tissue pathology and disease. Contrary to expectations, we show that telomeres shorten to critical lengths only in specific tissues and independently of their proliferation rate. Short telomeres accumulate in the gut but not in other highly proliferative tissues such as the blood and gonads. Notably, the muscle, a low proliferative tissue, accumulates short telomeres and DNA damage at the same rate as the gut. Together, our work shows that telomere shortening and DNA damage in key tissues triggers not only local dysfunction but also anticipates the onset of age-associated diseases in other tissues, including cancer.


Assuntos
Envelhecimento/genética , Apoptose/genética , Neoplasias/genética , Encurtamento do Telômero/genética , Telômero/genética , Envelhecimento/patologia , Animais , Células Sanguíneas , Divisão Celular/genética , Dano ao DNA/genética , Humanos , Rim/metabolismo , Neoplasias/etiologia , Especificidade de Órgãos , Peixe-Zebra
10.
Mol Cell ; 33(5): 559-69, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19285940

RESUMO

Genome stability depends upon the RecQ helicases, which are conserved from bacteria to man, but little is known about how their myriad activities are regulated. Fission yeast lacking the telomere protein Taz1 (mammalian TRF1/TRF2 ortholog) lose many hallmarks of telomeres, including accurate replication and local protection from DNA repair reactions. Here we show that the RecQ homolog, Rqh1, is sumoylated. Surprisingly, Rqh1 acts on taz1Delta telomeres in a deleterious way, promoting telomere breakage and entanglement. Mutation of Rqh1 sumoylation sites rescues taz1Delta cells from these hazards without dramatically affecting nontelomeric Rqh1 functions. The prominence of Rqh1 in the etiology of several different telomere defects supports the idea that they originate from a common underlying lesion--aberrant processing of the stalled telomeric replication forks that accumulate in the absence of Taz1. Our work underscores the principle that RecQ helicases are "double-edged swords" whose activity, while necessary for maintaining genome-wide stability, must be vigilantly controlled.


Assuntos
DNA Helicases/metabolismo , Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional , RecQ Helicases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Telômero/metabolismo , Alelos , Temperatura Baixa , DNA Helicases/genética , Replicação do DNA , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Instabilidade Genômica , Genótipo , Mutação , Fenótipo , RecQ Helicases/genética , Recombinação Genética , Origem de Replicação , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/efeitos da radiação , Estresse Fisiológico/genética , Proteínas de Ligação a Telômeros/deficiência , Proteínas de Ligação a Telômeros/genética , Fatores de Tempo
11.
EMBO J ; 31(24): 4576-86, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23188080

RESUMO

Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non-homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23(MRE11)-Rad50-Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1(ATM) activation nor 5'-end resection was required for telomere fusion. Nuclease activity of Rad32(MRE11) was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32(MRE11) mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split-molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ.


Assuntos
Reparo do DNA por Junção de Extremidades/fisiologia , Fase G1/fisiologia , Complexos Multiproteicos/metabolismo , Telômero/metabolismo , Sobrevivência Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Primers do DNA/genética , Eletroforese em Gel de Campo Pulsado , Exodesoxirribonucleases/metabolismo , Reação em Cadeia da Polimerase , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Telômeros/deficiência
12.
Nature ; 467(7312): 228-32, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20829797

RESUMO

Telomeres protect the normal ends of chromosomes from being recognized as deleterious DNA double-strand breaks. Recent studies have uncovered an apparent paradox: although DNA repair is prevented, several proteins involved in DNA damage processing and checkpoint responses are recruited to telomeres in every cell cycle and are required for end protection. It is currently not understood how telomeres prevent DNA damage responses from causing permanent cell cycle arrest. Here we show that fission yeast (Schizosaccharomyces pombe) cells lacking Taz1, an orthologue of human TRF1 and TRF2 (ref. 2), recruit DNA repair proteins (Rad22(RAD52) and Rhp51(RAD51), where the superscript indicates the human orthologue) and checkpoint sensors (RPA, Rad9, Rad26(ATRIP) and Cut5/Rad4(TOPBP1)) to telomeres. Despite this, telomeres fail to accumulate the checkpoint mediator Crb2(53BP1) and, consequently, do not activate Chk1-dependent cell cycle arrest. Artificially recruiting Crb2(53BP1) to taz1Δ telomeres results in a full checkpoint response and cell cycle arrest. Stable association of Crb2(53BP1) to DNA double-strand breaks requires two independent histone modifications: H4 dimethylation at lysine 20 (H4K20me2) and H2A carboxy-terminal phosphorylation (γH2A). Whereas γH2A can be readily detected, telomeres lack H4K20me2, in contrast to internal chromosome locations. Blocking checkpoint signal transduction at telomeres requires Pot1 and Ccq1, and loss of either Pot1 or Ccq1 from telomeres leads to Crb2(53BP1) foci formation, Chk1 activation and cell cycle arrest. Thus, telomeres constitute a chromatin-privileged region of the chromosomes that lack essential epigenetic markers for DNA damage response amplification and cell cycle arrest. Because the protein kinases ATM and ATR must associate with telomeres in each S phase to recruit telomerase, exclusion of Crb2(53BP1) has a critical role in preventing telomeres from triggering cell cycle arrest.


Assuntos
Reparo do DNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais , Telômero/metabolismo , Ciclo Celular , Dano ao DNA , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
14.
PLoS Genet ; 9(1): e1003214, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349637

RESUMO

Telomerase activity is restricted in humans. Consequentially, telomeres shorten in most cells throughout our lives. Telomere dysfunction in vertebrates has been primarily studied in inbred mice strains with very long telomeres that fail to deplete telomeric repeats during their lifetime. It is, therefore, unclear how telomere shortening regulates tissue homeostasis in vertebrates with naturally short telomeres. Zebrafish have restricted telomerase expression and human-like telomere length. Here we show that first-generation tert(-/-) zebrafish die prematurely with shorter telomeres. tert(-/-) fish develop degenerative phenotypes, including premature infertility, gastrointestinal atrophy, and sarcopaenia. tert(-/-) mutants have impaired cell proliferation, accumulation of DNA damage markers, and a p53 response leading to early apoptosis, followed by accumulation of senescent cells. Apoptosis is primarily observed in the proliferative niche and germ cells. Cell proliferation, but not apoptosis, is rescued in tp53(-/-)tert(-/-) mutants, underscoring p53 as mediator of telomerase deficiency and consequent telomere instability. Thus, telomerase is limiting for zebrafish lifespan, enabling the study of telomere shortening in naturally ageing individuals.


Assuntos
Envelhecimento/genética , Telomerase , Encurtamento do Telômero/genética , Proteína Supressora de Tumor p53 , Peixe-Zebra , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células , Senescência Celular , Dano ao DNA/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
15.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441152

RESUMO

Telomere length, unlike most genetic traits, is epigenetic, in the sense that it is not fully coded by the genome. Telomeres vary in length and randomly assort to the progeny leaving some individuals with longer and others with shorter telomeres. Telomerase activity counteracts this by extending telomeres in the germline and during embryogenesis but sizeable variances remain in telomere length. This effect is exacerbated by the absence of fully active telomerase. Telomerase heterozygous animals (tert+/-) have reduced telomerase activity and their telomeres fail to be elongated to wild-type average length, meaning that - with every generation - they decrease. After a given number of successive generations of telomerase-insufficient crosses, telomeres become critically short and cause organismal defects that, in humans, are known as telomere biology disorders. Importantly, these defects also occur in wild-type (tert+/+) animals derived from such tert+/- incrosses. Despite these tert+/+ animals being proficient for telomerase, they have shorter than average telomere length and, although milder, develop phenotypes that are similar to those of telomerase mutants. Here, we discuss the impact of this phenomenon on human pathologies associated with telomere length, provide a brief overview of telomere biology across species and propose specific measures for working with telomerase-deficient zebrafish.


Assuntos
Telomerase , Animais , Humanos , Telomerase/genética , Peixe-Zebra/genética , Fenótipo , Telômero/genética , Epigênese Genética
16.
Sci Rep ; 14(1): 5382, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443436

RESUMO

Telomerase activity is restricted in humans and telomere attrition occurs in several tissues accompanying natural aging. Critically short telomeres trigger DNA damage responses and activate p53 which leads to apoptosis or replicative senescence. These processes reduce cell proliferation and disrupt tissue homeostasis, thus contributing to systemic aging. Similarly, zebrafish have restricted telomerase expression, and telomeres shorten to critical length during their lifespan. Telomerase-deficient zebrafish (tert -/-) is a premature model of aging that anticipates aging phenotypes due to early telomere shortening. tert -/- zebrafish have impaired cell proliferation, accumulation of DNA damage markers and p53 response. These cellular defects lead to disruption of tissue homeostasis, resulting in premature infertility, gastrointestinal atrophy, sarcopenia and kyphosis. Such consequences contribute to its premature death. Here we reveal a genetic interdependence between tp53 and telomerase function. Mutation of tp53 abrogates premature aging of tert -/- zebrafish, prolonging male fertility and lifespan. However, it does not fully rescue healthspan. tp53mut tert -/- zebrafish retain high levels of inflammation and increased spontaneous cancer incidence. Conversely, loss of telomerase prolongs the lifespan of tp53mut single mutants. Lack of telomerase reduces two-fold the cancer incidence in double mutants and increases lifetime survival. Thus, we observe a reciprocal rescue of tp53mut and tert -/- that ameliorates lifespan but not spontaneous cancer incidence of tp53mut, likely due to higher levels of inflammation.


Assuntos
Neoplasias , Telomerase , Humanos , Animais , Masculino , Longevidade/genética , Peixe-Zebra/genética , Telomerase/genética , Incidência , Proteína Supressora de Tumor p53/genética , Inflamação , Neoplasias/genética
17.
Nat Aging ; 3(5): 567-584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142828

RESUMO

Telomere shortening is a hallmark of aging and is counteracted by telomerase. As in humans, the zebrafish gut is one of the organs with the fastest rate of telomere decline, triggering early tissue dysfunction during normal zebrafish aging and in prematurely aged telomerase mutants. However, whether telomere-dependent aging of an individual organ, the gut, causes systemic aging is unknown. Here we show that tissue-specific telomerase expression in the gut can prevent telomere shortening and rescues premature aging of tert-/-. Induction of telomerase rescues gut senescence and low cell proliferation, while restoring tissue integrity, inflammation and age-dependent microbiota dysbiosis. Averting gut aging causes systemic beneficial impacts, rescuing aging of distant organs such as reproductive and hematopoietic systems. Conclusively, we show that gut-specific telomerase expression extends the lifespan of tert-/- by 40%, while ameliorating natural aging. Our work demonstrates that gut-specific rescue of telomerase expression leading to telomere elongation is sufficient to systemically counteract aging in zebrafish.


Assuntos
Senilidade Prematura , Telomerase , Humanos , Animais , Idoso , Peixe-Zebra/genética , Telomerase/genética , Envelhecimento/genética , Encurtamento do Telômero/genética , Senilidade Prematura/genética
18.
Science ; 380(6649): eabn9257, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289866

RESUMO

Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.


Assuntos
Envelhecimento , Taurina , Animais , Humanos , Camundongos , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Senescência Celular , Haplorrinos , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Taurina/sangue , Taurina/deficiência , Taurina/farmacologia , Suplementos Nutricionais , Dano ao DNA/efeitos dos fármacos , Telomerase/metabolismo
19.
PLoS Genet ; 5(7): e1000578, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19629166

RESUMO

The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact--epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts.


Assuntos
Farmacorresistência Bacteriana Múltipla , Epistasia Genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Evolução Molecular , Mutação
20.
Bio Protoc ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35937931

RESUMO

Senescence-associated beta-galactosidase (SA-ß-GAL) is an enzyme that accumulates in the lysosomes of senescent cells, where it hydrolyses ß-galactosides. With p16, it represents a well-recognized biomarker used to assess senescence both in vivo and in cell culture. The use of a chromogenic substrate, such as 5-bromo-4-chloro-3-indoyl-ß-d-galactopyranoside (X-Gal), allows the detection of SA-ß-GAL activity at pH 6.0 by the release of a visible blue product. Senescence occurs during aging and is part of the aging process itself. We have shown that prematurely aged zebrafish accumulate senescent cells detectable by SA-ß-GAL staining in different tissues, including testis and gut. Here, we report a detailed protocol to perform an SA-ß-GAL assay to detect senescent cell accumulation across the entire adult zebrafish organism ( Danio rerio ). We also identify previously unreported organs that show increased cell senescence in telomerase mutants, including the liver and the spinal cord.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA