Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Parasitol Res ; 123(2): 146, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418645

RESUMO

Leishmaniasis is a neglected disease mainly affecting low-income populations. Conventional treatment involves several side effects, is expensive, and, in addition, protozoa can develop resistance. Photodynamic therapy (PDT) is a promising alternative in treating the disease. PDT involves applying light at a specific wavelength to activate a photosensitive compound (photosensitizer, PS), to produce reactive oxygen species (ROS). Curcumin and its photochemical characteristics make it a good candidate for photodynamic therapy. Studies evaluating gene expression can help to understand the molecular events involved in the cell death caused by PDT. In the present study, RNA was extracted from promastigotes from the control and treated groups after applying PDT. RT-qPCR was performed to verify the expression of the putative ATPase beta subunit (ATPS), ATP synthase subunit A (F0F1), argininosuccinate synthase 1 (ASS), ATP-binding cassette subfamily G member 2 (ABCG2), glycoprotein 63 (GP63), superoxide dismutase (FeSODA), and glucose-6-phosphate dehydrogenase (G6PDH) genes (QR). The results suggest that PDT altered the expression of genes that participate in oxidative stress and cell death pathways, such as ATPS, FeSODA, and G6PD. The ATP-F0F1, ASS, and GP63 genes did not have their expression altered. However, it is essential to highlight that other genes may be involved in the molecular mechanisms of oxidative stress and, consequently, in the death of parasites.


Assuntos
Curcumina , Leishmania major , Fotoquimioterapia , Curcumina/farmacologia , Fotoquimioterapia/métodos , Leishmania major/genética , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Trifosfato de Adenosina , Linhagem Celular Tumoral
2.
Photochem Photobiol Sci ; 22(8): 1977-1989, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37115408

RESUMO

Calcium carbonate (CaCO3) exhibits a variety of crystalline phases, including the anhydrous crystalline polymorphs calcite, aragonite, and vaterite. Developing porous calcium carbonate microparticles in the vaterite phase for the encapsulation of methylene blue (MB) as a photosensitizer (PS) for use in photodynamic therapy (PDT) was the goal of this investigation. Using an adsorption approach, the PS was integrated into the CaCO3 microparticles. The vaterite microparticles were characterized by scanning electron microscopy (SEM) and steady-state techniques. The trypan blue exclusion method was used to measure the biological activity of macrophages infected with Leishmania braziliensis in vitro. The vaterite microparticles produced are highly porous, non-aggregated, and uniform in size. After encapsulation, the MB-loaded microparticles kept their photophysical characteristics. The carriers that were captured allowed for dye localization inside the cells. The results obtained in this study indicated that the MB-loaded vaterite microparticles show promising photodynamic activity in macrophages infected with Leishmania braziliensis.


Assuntos
Leishmania braziliensis , Fotoquimioterapia , Carbonato de Cálcio/farmacologia , Carbonato de Cálcio/química , Azul de Metileno/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Macrófagos
3.
Lasers Med Sci ; 36(4): 821-827, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32748166

RESUMO

Photodynamic therapy (PDT) with photosensitizer methylene blue was applied to Leishmania braziliensis, and Fourier transform infrared (FTIR) spectroscopy was used to study biochemical changes in the parasite after PDT in comparison to untreated (C), only irradiation (I), and only photosensitizer (PS). Spectral analysis suggests increase in lipids, proteins, and protein secondary structures in PDT compared with C and decrease in nucleic acids and carbohydrates. Interestingly, these trends are different from PDT of Leishmania major species, wherein lipids decrease; there are minimal changes in secondary structures and increase in nucleic acids and carbohydrates. The study thus suggests possibility of different biomolecular players/pathways in PDT-induced death of L. braziliensis and L. major.


Assuntos
Leishmania braziliensis/metabolismo , Azul de Metileno/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/efeitos da radiação , Proteínas de Protozoários/metabolismo
4.
Lasers Med Sci ; 32(6): 1245-1252, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28503718

RESUMO

Even with the advances of conventional treatment techniques, the nervous system cancer prognosis is still not favorable to the patient which makes alternative therapies needed to be studied. Photodynamic therapy (PDT) is presented as a promising therapy, which employs a photosensitive (PS) agent, light wavelength suitable for the PS agent, and molecular oxygen, producing reactive oxygen species in order to induce cell death. The aim of this study is to observe the PDT action in gliosarcoma cell using a chlorin (Photodithazine, PDZ). The experiments were done with 9L/lacZ lineage cells, grown in a DMEM medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin solution and put in a culture chamber at 37 °C with an atmosphere of 5% CO2. The PS agent used was the PDZ to an LED light source device (Biopdi/IRRAD-LED 660) in the 660-nm region. The location of the PS agent was analyzed by fluorescence microscopy, and cell viability was analyzed by MTT assay (mitochondrial activity), exclusion by trypan blue (cell viability), and morphological examination through an optical microscope (Leica MD 2500). In the analysis of the experiments with PDZ, there was 100% cell death at different concentrations and clear morphological differences in groups with and without treatment. Furthermore, it was observed that the photodithazine has been focused on all nuclear and cytoplasmic extension; however, it cannot be said for sure whether the location is in the inside core region or on the plasma membrane. In general, the PDZ showed a promising photosensitive agent in PDT for the use of gliosarcoma.


Assuntos
Gliossarcoma/patologia , Glucosamina/análogos & derivados , Fotoquimioterapia/métodos , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Glucosamina/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Azul Tripano/metabolismo
5.
Lasers Med Sci ; 31(5): 883-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27056699

RESUMO

Cutaneous leishmaniasis is an infectious disease caused by the Leishmania protozoan. The conventional treatment is long-lasting and aggressive, in addition to causing harmful effect. Photodynamic therapy has emerged as a promising alternative treatment, which allows local administration with fewer side effects. This study investigated the photodynamic activity of curcumin on Leishmania major and Leishmania braziliensis promastigote. Both species were submitted to incubation with curcumin in serial dilutions from 500 µg/ml up to 7.8 µg/ml. Control groups were kept in the dark while PDT groups received a fluency of 10 J/cm(2) at 450 nm. Mitochondrial activity was assessed by MTT assay 18 h after light treatment, and viability was measured by Trypan blue dye exclusion test. Morphological alterations were observed by Giemsa staining. Confocal microscopy showed the uptake of curcumin by both tested Leishmania species. Mitochondrial activity was inconclusive to determine viability; however, Trypan blue test was able to show that curcumin photodynamic treatment had a significant effect on viability of parasites. The morphology of promastigotes was highly affected by the photodynamic therapy. These results indicated that curcumin may be a promising alternative photosensitizer, because it presents no toxicity in the dark; however, further tests in co-culture with macrophages and other species of Leishmania should be conducted to determine better conditions before in vivo tests are performed.


Assuntos
Curcumina/uso terapêutico , Leishmania braziliensis/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Macrófagos
6.
Lasers Med Sci ; 29(1): 113-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23455656

RESUMO

The effective treatment of infected wounds continues to be a serious challenge, mainly due to the rise of antibiotic-resistant bacteria. Photodynamic therapy (PDT) refers to the topical or systemic administration of a non-toxic, photosensitizing agent (PS), followed by irradiation with visible light of a suitable wavelength. The possibility of applying the PDT locally is what makes it so favorable to the treatment of infected wounds. The goal of this study was to evaluate the action of the PDT in the inactivation in vitro of microorganisms coming from infected wounds, using methylene blue (MB) and photodithazine (PDZ) as the PS and comparing the efficacy of these two compounds for PDT on bacteria. For the application of PDT, isolated microorganisms identified from material collected from wounds were suspended in a saline solution containing 10(6) viable cells/ml. Each isolated microorganism was submitted to PDT with MB and with PDZ in accordance with the following treatment groups: N/T--no treatment; T1--PDT with PDZ; T2--PDT with MB; T3--irradiation without PS; T4--treatment with PDZ without light; and T5--treatment with MB without light. As a light source, an LED-based device was used (Biopdi/Irrad-Lead 660), composed of 54 LEDs, each with 70 mW of power in the 660 nm region of the electromagnetic spectrum. Each tray of 96 wells was irradiated with an intensity of 25 mW/cm(2) and a dose of light of 50 J/cm(3) for 33 min. All the tests were made in duplicate. It was then concluded that the PDT with PDZ was capable of inhibiting the growth of gram-positive bacteria samples, however it did not have the same effect on gram-negative bacteria, which showed growth greater than 100,000 CFU; the PDT with MB showed an effectiveness on gram-positive as well as gram-negative bacteria, for it was able to inhibit bacterial growth in both cases.


Assuntos
Bactérias/efeitos dos fármacos , Fotoquimioterapia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Bactérias/crescimento & desenvolvimento , Enterobacter/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Glucosamina/análogos & derivados , Glucosamina/uso terapêutico , Humanos , Técnicas In Vitro , Azul de Metileno/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Proteus mirabilis/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
7.
Photodiagnosis Photodyn Ther ; 45: 103871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935343

RESUMO

Rosacea is a chronic and inflammatory skin condition, with relapses being a common characteristic. Its treatments are based on cosmetics, drugs, and the application of procedures based on high-powered light. Photodynamic Cosmetic Therapy (PCT) combines light, a photosensitizer (PS), and molecular oxygen present in tissues, generating photochemical reactions capable of causing tissue and vascular destruction, stimulating tissue repair. We report a case with an adverse effect caused by applying PCT, using 2 % 5-aminolevulinic acid (ALA 2 %), and irradiated with amber LED light associated with infrared radiation for the control of rosacea. A patient with subtype II rosacea underwent PCT treatment of 3 sessions at 21-day intervals, being evaluated using photographic images and Wood's lamp. In the first session of the therapy, an exacerbated inflammatory process was observed. Such an adverse event is estimated to be as a result of the patient using ointment containing corticosteroids for a short period. With the use of medications, it was possible to recover the appearance of the skin thoroughly, and after 21 days, the treatment sessions were performed again. Despite the complication that affected the patient in this study, positive effects were found after the pharmacological therapeutic measures were adopted.


Assuntos
Fotoquimioterapia , Rosácea , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/efeitos adversos , Rosácea/tratamento farmacológico , Pele , Ácido Aminolevulínico/efeitos adversos
8.
Photodiagnosis Photodyn Ther ; 46: 104001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342387

RESUMO

Cutaneous leishmaniasis is a neglected disease prevalent in tropical countries, and conventional treatment can cause several serious side effects. Photodynamic therapy (PDT) can be considered a promising treatment alternative, as it is non-invasive therapy that has no side effects and uses accessible and low-cost substances, such as curcumin. This study evaluated the PDT response with cationic and anionic BSA nanoparticles encapsulated with curcumin in macrophages infected with L. braziliensis, L. major, and L. amazonensis. The nanoparticle system was characterized using a steady-state technique, scanning electron microscopy (SEM) study, and its biological activity was evaluated using macrophage cell lines infected with different Leishmania species. All spectroscopy measurements demonstrated that BSA curcumin (BSACur) has good photophysical properties, and confocal microscopy shows that macrophages and protozoa internalized the nanoparticles. The viability test demonstrated that at low concentrations, such as 0.1, 0.7, and 1.0 µmol. L-1, there was a decrease in cell viability after PDT application. Furthermore, a decrease in the number of parasites recovered was observed in the PDT groups. The results allowed us to conclude that curcumin loaded into BSA nanoparticles may have potential application in drug delivery systems for PDT protocols, demonstrating reduced cell viability at lower concentrations than free curcumin.


Assuntos
Sobrevivência Celular , Curcumina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Soroalbumina Bovina , Curcumina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Leishmania braziliensis/efeitos dos fármacos , Camundongos , Cátions , Leishmaniose Cutânea/tratamento farmacológico , Leishmania major/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia
9.
J Mater Chem B ; 12(31): 7626-7634, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005154

RESUMO

The achievement of smart pharmaceuticals whose bioactivity can be spatiotemporally controlled by light stimuli is known as photopharmacology, an emerging area aimed at improving the therapeutic outcome and minimizing side effects. This is especially attractive for antibiotics, for which the inevitable development of multidrug resistance and the dwindling of new clinically approved drugs represent the main drawbacks. Here, we show that nitrosation of the fluoroquinolone norfloxacin (NF), a broad-spectrum antibiotic, leads to the nitrosated bioconjugate NF-NO, which is inactive at the typical minimum inhibitory concentration of NF. Irradiation of NF-NO with visible blue light triggers the simultaneous release of NF and nitric oxide (NO). The photouncaging process is accompanied by the revival of the typical fluorescence emission of NF, quenched in NF-NO, which acts as an optical reporter. This permits the real-time monitoring of the photouncaging process, even within bacteria cells where antibacterial activity is switched on exclusively upon light irradiation. The mechanism of photorelease seems to occur through a two-step hopping electron transfer mediated by the lowest triplet state of NF-NO and the phosphate buffer ions or aminoacids such as tyrosine. Considering the well-known role of NO as an "unconventional" antibacterial, the NF-NO conjugate may represent a potential bimodal antibacterial weapon activatable on demand with high spatio-temporal control.


Assuntos
Antibacterianos , Óxido Nítrico , Norfloxacino , Antibacterianos/farmacologia , Antibacterianos/química , Óxido Nítrico/metabolismo , Norfloxacino/farmacologia , Norfloxacino/química , Fluorescência , Processos Fotoquímicos , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Luz , Estrutura Molecular , Escherichia coli/efeitos dos fármacos
10.
J Photochem Photobiol B ; 252: 112860, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330692

RESUMO

Staphylococcus aureus infections are a severe health problem due to the high mortality rate. Conventional treatment of these infections is via the administration of antibiotics. However, its indiscriminate use can select resistant microorganisms. Thus, it is necessary to develop alternatives for antibiotic therapy. Antimicrobial Photodynamic Therapy (aPDT), a therapeutic method that associates a photosensitizer (PS), a light source with adequate wavelength to the PS, interacts with molecular oxygen generating reactive oxygen species responsible for cell inactivation, is a viable alternative. This work aimed to analyze, in vitro and in vivo, the action of aPDT with PS Photodithazine® (PDZ) on the methicillin-resistant S. aureus (MRSA) strain. In the in vitro method, the S. aureus biofilm was incubated with PDZ at 50 and 75 µg.mL-1 for 15 min, adopting the light dose of 25, 50, and 100 J/cm2. In addition, PS interaction, formation of reactive oxygen species (ROS), bacterial metabolism, adhesion, bacterial viability, and biofilm structure were evaluated by scanning electron microscopy. Subsequently, the strain was inoculated into models of Galleria mellonella, and the survival curve, health scale, blood cell analysis, and CFU/mL of S. aureus in the hemolymph were analyzed after aPDT. In the in vitro results, bacterial reduction was observed in the different PDZ concentrations, highlighting the parameters of 75 µg.mL-1 of PDZ and 100 J/cm2. As for in vivo results, aPDT increased survival and stimulated the immune system of G. mellonella infected by S. aureus. aPDT proved effective in both models, demonstrating its potential as an alternative therapy in treating MRSA bacterial infections.


Assuntos
Anti-Infecciosos , Glucosamina/análogos & derivados , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Animais , Staphylococcus aureus , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Anti-Infecciosos/farmacologia , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Modelos Teóricos
11.
ACS Med Chem Lett ; 15(6): 857-863, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894929

RESUMO

A hydrophobic nitric oxide (NO) photodonor integrating both nitroso and nitro functionalities within its chromophoric skeleton has been synthesized. Excitation of this compound with blue light triggers the release of two NO molecules from the nitroso and the nitro functionalities via a stepwise mechanism. Encapsulation of the NO photodonor within biocompatible neutral, cationic, and anionic ß-cyclodextrin branched polymers as suitable carriers leads to supramolecular nanoassemblies, which exhibit the same nature of the photochemical processes but NO photorelease performances enhanced by about 1 order of magnitude when compared with the free guest. Antibacterial tests carried out with methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii demonstrate an effective antibacterial activity exclusively under light activation and point out a differentiated role of the polymeric nanocarriers in determining the outcome of the antibacterial photodynamic action.

12.
J Funct Biomater ; 14(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976075

RESUMO

Microbial control through alternative therapies, such as the amniotic membrane (AM) and antimicrobial photodynamic therapy (aPDT), has been gaining prominence with the advancement of bacterial resistance to conventional treatments. This study aimed to evaluate the antimicrobial effect of AM isolated and associated with aPDT using the PHTALOX® as a photosensitizer (PS) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The groups studied were: C+; L; AM; AM+L; AM+PHTX; and AM+aPDT. The irradiation parameters were 660 nm, 50 J.cm-2, and 30 mW.cm-2. Two independent microbiological experiments were carried out in triplicate, and the results were analyzed by CFU/mL counting and a metabolic activity test, both statistically analyzed (p < 0.05). The integrity of the AM was verified after the treatments by a scanning electron microscope (SEM). The groups AM, AM+PHTX, and, mainly, AM+aPDT showed a statistical difference when compared to C+ regarding the decrease in CFU/mL and metabolic activity. SEM analysis showed significant morphological alterations in the AM+PHTX and AM+aPDT groups. The treatments with AM isolated or associated with PHTALOX® were adequate. The association had potentiated the biofilm effect, and the morphological differences presented by AM after treatment did not hinder its antimicrobial effect, encouraging its use in biofilm formation locals.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121916, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36201868

RESUMO

Alternative therapies against pathogens are under intense investigation because of their increasing resistance to antibiotics. Photodynamic therapy (PDT) is one such alternative that has shown promising results. However, for the widespread use of PDT, it is essential to decipher underlying mechanisms, so as to improve PDT's therapeutic applications. Because of this, we have studied biochemical changes in pathogen Pseudomonas aeruginosa, a medically important bacteria that has developed antibiotic resistance, after PDT with curcumin photosensitizer. Results show a drastic decrease in α-helix protein and increased disordered and ß-sheet secondary structure proteins in P. Aeruginosa post-PDT compared to control. Interestingly, these biochemical changes differ from PDT of pathogens Leishmania braziliensis and Leishmania major with photosensitizer methylene blue. This observation underlines the need for extensive studies on PDT of different pathogens to understand mechanisms of action and develop better PDT strategies.


Assuntos
Curcumina , Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pseudomonas aeruginosa , Curcumina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Photodiagnosis Photodyn Ther ; 44: 103830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852406

RESUMO

BACKGROUND: Hydroxyapatite (HAp) presents similarities with the human bone structure and presents properties such as biodegradability, biocompatibility, and osteoconductivity, which favors its use in prostheses implants and enables its use as a vehicle for the delivery of photosensitizers (PS) from systems of release (DDS) for photodynamic therapy applications Methods: In this work was to synthesized hydroxyapatite microspheres (meHAp), encapsulated with chloroaluminium phthalocyanine (ClAlPc), for DDS. meHAp was synthesized using vaterite as a template. The drug was encapsulated by mixing meHAp and a 50.0 mg.mL-1 ClAlPc solution. Photochemical, photophysical, and photobiological studies characterized the system. RESULTS: The images from the SEM analysis showed the spherical form of the particles. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the meHAp system. The incorporation efficiency was 57.8 %. The trypan blue exclusion test results showed a significant reduction (p < 0.05) in cell viability for the groups treated with PDT at all concentrations above 250 µg.mL-1. In 9 L/lacZ gliosarcoma cells, PDT mediated at concentrations from 250 to 62.5 µg.mL-1 reduced cell viability by more than 98 %. In the cell internalization study, it was possible to observe the internalization of phthalocyanines at 37 °C, with the accumulation of PS in the cytoplasm and inside the nucleus in the two tested concentrations. CONCLUSIONS: From all the results presented throughout the article, the meHAp system shows promise for use as a modified release system (DSD) in photodynamic therapy.


Assuntos
Gliossarcoma , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Durapatita , Óperon Lac , Microesferas , Sistemas de Liberação de Medicamentos
15.
Acta Cir Bras ; 37(9): e370905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36515314

RESUMO

PURPOSE: Fluorescence spectroscopy techniques have been investigated aiming to reduce the invasiveness of methods for investigation of tissue. In transplantation procedures, it may offer the possibility of a complementary technique for the monitoring of liver grafts' conditions prior to and during the transplantation procedure stages involving cold perfusion. The objective of this study was to evaluate fluorescence spectroscopy under violet light excitation (408 nm) for the monitoring of clinical hypothermic liver transplantation procedures. METHODS: Organ grafts were monitored from before the removal of the donor's body to 1 h after the implant into the receptor's body. Fluorescence spectroscopy was assessed over five stages within these transplant stages. RESULTS: The study provided evidence of a correlation between fluorescence information collected during liver grafts transplantation and the survival of patients. CONCLUSIONS: Fluorescence spectroscopy can become a tool to monitor transplantation grafts, providing objective information for the final decision of surgeons to use organs.


Assuntos
Transplante de Fígado , Preservação de Órgãos , Humanos , Preservação de Órgãos/métodos , Espectrometria de Fluorescência/métodos , Perfusão/métodos , Fígado/cirurgia , Transplante de Fígado/métodos
16.
Photodiagnosis Photodyn Ther ; 37: 102729, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35041982

RESUMO

Healthcare-Associated Infections (HAI) effect approximately 1.5 million individuals worldwide. Among the causes of HAIs in Latin America, Staphylococcus aureus presents a severe danger due to its rapid spread and ease of developing antibiotic resistance. Upon acquiring methicillin resistance, it receives the classification Methicillin-Resistant Staphylococcus aureus (MRSA), responsible for 40 to 60% of HAIs. The increase in resistant microorganisms led to the search for alternative methods, such as antimicrobial Photodynamic Therapy (aPDT), forming Reactive Oxygen Species (ROS), leading bacterial cells to death. The objective of this work was to evaluate in vitro the antimicrobial action of PDT with curcumin in MRSA biofilm. The strains were induced to form biofilm and incubated with curcumin for 20 min, irradiated with LED (Light Emitting Diode) 450 nm, at 110 mW/cm2, 50 J/cm2 for 455 s, subsequently counting the Colony Forming Units, Scanning Electron Microscopy (SEM) micrographs, Confocal Microscopy images, Resazurin dye test, ROS quantification to assess the effect of PDT on biofilm. The results show that PDT with curcumin reduced the biofilm growth of the MRSA strain. In addition, confocal microscopy showed that curcumin was internalized by S. aureus in the cells at the concentration used, and when isolated, curcumin and the irradiation parameter did not show cytotoxicity. The study demonstrated that the PDT in the established parameters reduced the growth of the MRSA strain biofilm, making it a relevant alternative possibility for the inactivation of this strain.


Assuntos
Anti-Infecciosos , Curcumina , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Anti-Infecciosos/farmacologia , Biofilmes , Curcumina/farmacologia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus
17.
Photodiagnosis Photodyn Ther ; 38: 102818, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35331952

RESUMO

BACKGROUND: Hydrogel systems are increasingly gaining visibility involving biomedicine, tissue engineering, environmental treatments, and drug delivery systems. These systems have a three-dimensional network composition and high-water absorption capacity, are biocompatible, allowing them to become an option as photosensitizer carriers (PS) for applications in Photodynamic Therapy (PDT) protocols. METHODS: A nanohydrogel system (NAHI), encapsulated with chloroaluminium phthalocyanine (ClAlPc) was synthesized for drug delivery.. NAHI was synthesized using gelatin as based polymer by the chemical cross-linking technique. The drug was encapsulated by immersing the hydrogel in a 1.0 mg.mL-1 ClAlPc solution. The external morphology of NAHI was examined by scanning electron microscopy (SEM). The degree of swelling of the synthesized system was evaluated to determine the water absorption potential. The produced nanohydrogel system was characterized by photochemical, photophysical and photobiologial studies. RESULTS: The images from the SEM analysis showed the presence of three-dimensional networks in the formulation. The swelling test demonstrated that the nanohydrogel freeze-drying process increases its water holding capacity. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the NAHI system. The incorporation efficiency was 70%. The results of trypan blue exclusion test have shown significant reduction (p < 0.05) in the cell viability for all groups treated with PDT, in all concentrations tested. In HeLa cells, PDT mediated by 0,5 mg.mL-1 ClAlPc encapsulated in NAHI showed a decrease in survival close to 95%. In the internalization cell study was possible to observe the internalization of phthalocyanine after one hour of incubation, at 37 °C, with the the accumulation of PS in the cytoplasm and inside the nucleus at both concentrations tested. CONCLUSIONS: Given the peculiar performance of the selected system, the resulting nanohydrogel is a versatile platform and display potential applications as controlled delivery systems of photosensitizer for photodynamic therapy application.


Assuntos
Hidrogéis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Gelatina , Células HeLa , Humanos , Indóis , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
18.
Photodiagnosis Photodyn Ther ; 38: 102850, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35395414

RESUMO

BACKGROUND: The use of nanotechnology has been widely used in biomedical science, including orthopedic implants, tissue engineering, cancer therapy and drug elution from nanoparticle systems, such as poly-caprolactone (PCL) nanoparticles, which stand out mainly for their biocompatibility, being considered as effective carriers for photosensitizing drugs (PS) in photodynamic therapy (PDT) protocols. METHODS: This manuscript describes the synthesis and characterization of PCL nanoparticles for controlled release of the drug chloro-aluminum phthalocyanine (ClAlPc) as a photosensitizer for application in PDT. The PCL-ClAlPc nanoparticles were developed by the nanoprecipitation process. The structure and morphology of the nanoparticles were studied with scanning electron microscopy (SEM) and with Fourier transform infrared (FTIR). The size of nanomaterials was studied using the Dynamic Light Scattering (DLS) method. Photophysical and photochemical characterizations were performed. Subsequently, photobiological studies were also used to characterize the system. RESULTS: The nanoparticles had an average diameter of 384.7 ± 138.6 nm and a polydispersity index of 0.153. SEM analysis revealed that the system formed a spherical shape typical of these delivery systems. Charging efficiency was 82.1% ± 1.2%. The phthalocyanine-loaded PCL nanoparticles maintained their photophysical behavior after encapsulation. Cell viability was determined after the dark toxicity test, and it was possible to observe that there was no evidence of toxicity in the dark, for all concentrations tested. The assay also revealed that adenocarcinoma cells treated with free ClAlPc and in the nanoformulation showed 100% cell death when subjected to PDT protocols. The intracellular location of the photosensitizer indicated a high potential for accumulation in the cytoplasm and nucleus. CONCLUSIONS: From the photophysical, photochemical and photobiological analyzes obtained, it was possible to observe that the development of PCL nanoparticles encapsulated with ClAlPc, by the nanoprecipitation method was adequate and that the in vivo release study is efficient to reduce the release rate and attenuate the burst of PS loaded on PCL nanoparticles. The results reinforce that the use of this system as drug delivery systems is useful in PDT protocols.


Assuntos
Nanopartículas , Fotoquimioterapia , Caproatos , Portadores de Fármacos/química , Indóis , Isoindóis , Lactonas , Nanopartículas/química , Compostos Organometálicos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/química
19.
Antibiotics (Basel) ; 11(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35625263

RESUMO

Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative strategy to control Acinetobacter baumannii infections. In this study, we evaluated the action of aPDT mediated by a new photosensitizer derivative from chlorin e-6 (Fotoenticine-FTC) on A. baumannii, comparing its effects with methylene blue (MB). For this, aPDT was applied on A. baumannii in planktonic growth, biofilms, and burn infections in Galleria mellonella. The absorption of FTC and MB by bacterial cells was also evaluated using microscopic and spectrophotometric analysis. The results of planktonic cultures showed that aPDT reduced the number of viable cells compared to the non-treated group for the reference and multidrug-resistant A. baumannii strains. These reductions varied from 1.4 to 2 log10 CFU for FTC and from 2 log10 CFU to total inhibition for MB. In biofilms, aPDT with MB reduced 3.9 log10 CFU of A. baumannii, whereas FTC had no effect on the cell counts. In G. mellonella, only MB-mediated aPDT had antimicrobial activity on burn injuries, increasing the larvae survival by 35%. Both photosensitizers were internalized by bacterial cells, but MB showed a higher absorption compared to FTC. In conclusion, MB had greater efficacy than FTC as a photosensitizer in aPDT against A. baumannii.

20.
J Biomater Sci Polym Ed ; 33(1): 93-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517784

RESUMO

Development delivery systems, such as nanoparticles, represent a growing area in biomedical research. Nanoparticles (NP) were prepared using a double-emulsion method to load zinc(II) phthalocyanine (ZnPc). NP were obtained using poly (lactic acid) (PLA). ZnPc is a second generation of photosensitizer used in photodynamic therapy (PDT). ZnPc loaded PLA nanoparticles (NPLA-ZnPc) were prepared by double-emulsion method, characterized and available in cellular culture. The mean nanoparticle size presented particle size was 384.7 ± 84.2 nm with polydispersity index (PDI) of 0.150 ± 0.015, and the encapsulation efficiency was of 83%. The nanoparticle formulations presented negative zeta potential values (-27.5 ± 1.0 mV), explaining their colloidal stability. ZnPc loaded nanoparticles maintain its photophysical behavior after encapsulation. Photosensitizer release from nanoparticles was sustained over 168 h with a biphasic ZnPc release profile. An in vitro phototoxic effect in range of 80% was observed in 9 L/LacZ gliosarcoma cells at laser light doses (10 J cm-2) with 3.0 µg mL-1 of NPLA-ZnPc. All the physical-chemical, photophysical and photobiological measurements performed allow us to conclude that ZnPc loaded PLGA nanoparticles is a promising drug delivery system for PDT.


Assuntos
Gliossarcoma , Nanopartículas , Compostos Organometálicos , Fotoquimioterapia , Emulsões , Humanos , Óperon Lac , Ácido Láctico , Fármacos Fotossensibilizantes , Poliésteres , Zinco , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA