Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Proteome Res ; 20(1): 867-879, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210542

RESUMO

Staphylococcus aureus represents an opportunistic pathogen, which utilizes elaborate quorum sensing mechanisms to precisely control the expression and secretion of virulence factors. Previous studies indicated a role of the ClpXP proteolytic system in controlling pathogenesis. While detailed transcriptome data for S. aureus ClpP and ClpX knockout mutants is available, corresponding studies on the proteome and secretome level are largely lacking. To globally decipher the functional roles of ClpP and ClpX, we utilized S. aureus genomic deletion mutants of the corresponding genes for in-depth proteomic liquid chromatography-mass spectrometry (LC-MS)/MS analysis. These studies were complemented by an inactive ClpP active-site mutant strain to monitor changes solely depending on the activity and not the presence of the protein. A comparison of these strains with the wildtype revealed, e.g., downregulation of virulence, purine/pyrimidine biosynthesis, iron uptake, and stress response. Correspondingly, the integration of metabolomics data showed a reduction in the subset of purine and pyrimidine metabolite levels. Interestingly, a comparison between the ClpP knockout and ClpP S98A active-site mutant strains revealed characteristic differences. These results are not only of fundamental importance to understand the cellular role of ClpXP but also have implications for the development of novel virulence inhibitor classes.


Assuntos
Endopeptidase Clp , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Proteômica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
2.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503913

RESUMO

Triclocarban (TCC), a formerly used disinfectant, kills bacteria via an unknown mechanism of action. A structural hallmark is its N,N'-diaryl urea motif, which is also present in other antibiotics, including the recently reported small molecule PK150. We show here that, like PK150, TCC exhibits an inhibitory effect on Staphylococcus aureus menaquinone metabolism via inhibition of the biosynthesis protein demethylmenaquinone methyltransferase (MenG). However, the activity spectrum (MIC90) of TCC across a broad range of multidrug-resistant staphylococcus and enterococcus strains was much narrower than that of PK150. Accordingly, TCC did not cause an overactivation of signal peptidase SpsB, a hallmark of the PK150 mode of action. Furthermore, we were able to rule out inhibition of FabI, a confirmed target of the diaryl ether antibiotic triclosan (TCS). Differences in the target profiles of TCC and TCS were further investigated by proteomic analysis, showing complex but rather distinct changes in the protein expression profile of S. aureus Downregulation of the arginine deiminase pathway provided additional evidence for an effect on bacterial energy metabolism by TCC.IMPORTANCE TCC's widespread use as an antimicrobial agent has made it a ubiquitous environmental pollutant despite its withdrawal due to ecological and toxicological concerns. With its antibacterial mechanism of action still being unknown, we undertook a comparative target analysis between TCC, PK150 (a recently discovered antibacterial compound with structural resemblance to TCC), and TCS (another widely employed chlorinated biphenyl antimicrobial) in the bacterium Staphylococcus aureus We show that there are distinct differences in each compound's mode of action, but also identify a shared target between TCC and PK150, the interference with menaquinone metabolism by inhibition of MenG. The prevailing differences, however, which also manifest in a remarkably better broad-spectrum activity of PK150, suggest that even high levels of TCC or TCS resistance observed by continuous environmental exposure may not affect the potential of PK150 or related N,N'-diaryl urea compounds as new antibiotic drug candidates against multidrug-resistant infections.


Assuntos
Proteínas de Bactérias/genética , Carbanilidas/farmacologia , Desinfetantes/farmacologia , Enterococcus/efeitos dos fármacos , Metiltransferases/genética , Staphylococcus aureus/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Metiltransferases/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
3.
Org Biomol Chem ; 17(30): 7124-7127, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313793

RESUMO

Proteolysis mediated by ClpXP is a crucial cellular process linked to bacterial pathogenesis. The development of specific inhibitors has largely focused on ClpP. However, this focus was challenged by a recent finding showing that conformational control by ClpX leads to a rejection of ClpP binders. Thus, we here follow up on a hit molecule from a high throughput screen performed against the whole ClpXP complex and demonstrate that stable inhibition with high potency is possible. Further investigations revealed that the small molecule binds to ClpP without affecting its activity. Likewise, the molecule does not inhibit ClpX and retains the overall oligomeric state of ClpXP upon binding. Structure activity relationship studies confirmed structural constraints in all three parts of the molecule suggesting binding into a defined stereospecific pocket. Overall, the inhibition of ClpXP without affecting the individual components represents a novel mechanism with perspectives for further optimization for in situ applications.


Assuntos
Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/química , Hidantoínas/farmacologia , Inibidores de Proteases/farmacologia , Endopeptidase Clp/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Hidantoínas/síntese química , Hidantoínas/química , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
4.
J Am Chem Soc ; 140(5): 1774-1782, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29300464

RESUMO

Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pirrolidinas/farmacologia , Salicilamidas/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/metabolismo , Pirrolidinas/química , Salicilamidas/química , Succinato Desidrogenase/metabolismo
5.
J Proteome Res ; 16(3): 1180-1192, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28186774

RESUMO

ß-Lactones have recently been introduced as the first selective ClpP inhibitors that attenuate virulence of both sensitive Staphylococcus aureus and multiresistant strains (MRSA). Although previous knockout studies showed that ClpP is essential for S. aureus alpha-toxin production, a link between ß-lactone inhibition and molecular virulence mechanisms has been lacking so far. We here perform a chemical-proteomic approach to elucidate antivirulence pathways. First, we demonstrate by gel-free activity-based protein profiling that ClpP is the predominant target of ß-lactones. Only a few off-targets were discovered, which, unlike ClpP, were not involved in the reduction of alpha-toxin expression. Second, in-depth mechanistic insight was provided by a full proteomic comparison between lactone treated and untreated S. aureus cells. Quantitative mass-spectrometric analysis revealed increased repressor of toxin (Rot) levels and a corresponding down-regulation of α-toxin, providing the first direct connection between the lactone-dependent phenotype and a corresponding cellular mechanism. By building up a quantitative virulence regulation network, we visualize the impact of ClpP inhibition in a systems biology context. Interestingly, a lack of in vitro Rot degradation by either ClpXP or ClpCP calls either for a proteolysis mechanism with yet unknown adaptor proteins or for an indirect mode of action that may involve ClpX-mediated RNA signaling and feedback circuits.


Assuntos
Lactonas/farmacologia , Staphylococcus aureus/patogenicidade , Virulência/efeitos dos fármacos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endopeptidase Clp/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteômica , Proteínas Repressoras/análise , Biologia de Sistemas
6.
J Am Chem Soc ; 139(17): 6152-6159, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28350441

RESUMO

Host-microbe communication via small molecule signals is important for both symbiotic and pathogenic relationships, but is often poorly understood at the molecular level. Under conditions of host stress, levels of the human opioid peptide dynorphin are elevated, triggering virulence in the opportunistic pathogenic bacterium Pseudomonas aeruginosa via an unknown pathway. Here we apply a multilayered chemical biology strategy to unravel the mode of action of this putative interkingdom signal. We designed and applied dynorphin-inspired photoaffinity probes to reveal the protein targets of the peptide in live bacteria via chemical proteomics. ParS, a largely uncharacterized membrane sensor of a two-component system, was identified as the most promising hit. Subsequent full proteome studies revealed that dynorphin(1-13) induces an antimicrobial peptide-like response in Pseudomonas, with specific upregulation of membrane defense mechanisms. No such response was observed in a parS mutant, which was more susceptible to dynorphin-induced toxicity. Thus, P. aeruginosa exploits the ParS sensing machinery to defend itself against the host in response to dynorphin as a signal. This study highlights interkingdom communication as a potential essential strategy not only for induction of P. aeruginosa virulence but also for maintaining viability in the hostile environment of the host.


Assuntos
Antibacterianos/química , Dinorfinas/química , Sondas Moleculares/química , Proteínas Quinases/química , Pseudomonas aeruginosa/enzimologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Humanos , Estrutura Molecular , Proteínas Quinases/metabolismo , Proteômica , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Angew Chem Int Ed Engl ; 56(49): 15746-15750, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28906057

RESUMO

The Staphylococcus aureus ClpXP protease is an important regulator of cell homeostasis and virulence. We utilized a high-throughput screen against the ClpXP complex and identified a specific inhibitor of the ClpX chaperone that disrupts its oligomeric state. Synthesis of 34 derivatives revealed that the molecular scaffold is restrictive for diversification, with only minor changes tolerated. Subsequent analysis of the most active compound revealed strong attenuation of S. aureus toxin production, which was quantified with a customized MS-based assay platform. Transcriptome and whole-proteome studies further confirmed the global reduction of virulence and revealed characteristic signatures of protein expression in the compound-treated cells. Although these partially matched the pattern of ClpX knockout cells, further depletion of toxins was observed, leading to the intriguing perspective that additional virulence pathways may be directly or indirectly addressed by the small molecule.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Endopeptidase Clp/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Inibidores de Proteases/farmacologia , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Endopeptidase Clp/deficiência , Endopeptidase Clp/metabolismo , Ensaios de Triagem em Larga Escala , Staphylococcus aureus Resistente à Meticilina/metabolismo , Estrutura Molecular , Inibidores de Proteases/química , Relação Estrutura-Atividade , Virulência
8.
Angew Chem Int Ed Engl ; 55(47): 14852-14857, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782347

RESUMO

Gram-negative bacteria represent a challenging task for antibacterial drug discovery owing to their impermeable cell membrane and restricted uptake of small molecules. We herein describe the synthesis of natural-product-derived epoxycyclohexenones and explore their antibiotic activity against several pathogenic bacteria. A compound with activity against Salmonella Typhimurium was identified, and the target enzymes were unraveled by quantitative chemical proteomics. Importantly, two protein hits were linked to bacterial stress response, and corresponding assays revealed an elevated susceptibility to reactive oxygen species upon compound treatment. The consolidated inhibition of these targets provides a rationale for antibacterial activity and highlights epoxycyclohexenones as natural product scaffolds with suitable properties for killing Gram-negative Salmonella.


Assuntos
Antibacterianos/farmacologia , Benzoquinonas/farmacologia , Produtos Biológicos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Benzoquinonas/síntese química , Benzoquinonas/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular
9.
Angew Chem Int Ed Engl ; 54(52): 15892-6, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26566002

RESUMO

Caseinolytic protease P (ClpP) is an important regulator of Staphylococcus aureus pathogenesis. A high-throughput screening for inhibitors of ClpP peptidase activity led to the identification of the first non-covalent binder for this enzyme class. Co-crystallization of the small molecule with S. aureus ClpP revealed a novel binding mode: Because of the rotation of the conserved residue proline 125, ClpP is locked in a defined conformational state, which results in distortion of the catalytic triad and inhibition of the peptidase activity. Based on these structural insights, the molecule was optimized by rational design and virtual screening, resulting in derivatives exceeding the potency of previous ClpP inhibitors. Strikingly, the conformational lock is overturned by binding of ClpX, an associated chaperone that enables proteolysis by substrate unfolding in the ClpXP complex. Thus, regulation of inhibitor binding by associated chaperones is an unexpected mechanism important for ClpP drug development.


Assuntos
Serina Endopeptidases/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Conformação Proteica , Relação Estrutura-Atividade
10.
RSC Chem Biol ; 3(7): 955-971, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35866172

RESUMO

Listeria monocytogenes exhibits two ClpP isoforms (ClpP1/ClpP2) which assemble into a heterooligomeric complex with enhanced proteolytic activity. Herein, we demonstrate that the formation of this complex depends on temperature and reaches a maximum ratio of about 1 : 1 at 30 °C, while almost no complex formation occurred below 4 °C. In order to decipher the role of the two isoforms at elevated temperatures, we constructed L. monocytogenes ClpP1, ClpP2 and ClpP1/2 knockout strains and analyzed their protein regulation in comparison to the wild type (WT) strain via whole proteome mass-spectrometry (MS) at 37 °C and 42 °C. While the ΔclpP1 strain only altered the expression of very few proteins, the ΔclpP2 and ΔclpP1/2 strains revealed the dysregulation of many proteins at both temperatures. These effects were corroborated by crosslinking co-immunoprecipitation MS analysis. Thus, while ClpP1 serves as a mere enhancer of protein degradation in the heterocomplex, ClpP2 is essential for ClpX binding and functions as a gatekeeper for substrate entry. Applying an integrated proteomic approach combining whole proteome and co-immunoprecipitation datasets, several putative ClpP2 substrates were identified in the context of different temperatures and discussed with regards to their function in cellular pathways such as the SOS response.

11.
J Cell Sci ; 122(Pt 18): 3374-84, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19706687

RESUMO

Multi-PDZ (PSD-95/Discs large/Zonula-occludens-1) domain proteins play a crucial role in the establishment and maintenance of cell polarization. The novel multi-PDZ domain protein FRMPD2 is a potential scaffolding protein consisting of an N-terminal KIND domain, a FERM domain and three PDZ domains. Here we show that FRMPD2 is localized in a polarized fashion in epithelial cells at the basolateral membrane and partially colocalizes with the tight-junction marker protein Zonula-occludens-1. Downregulation of FRMPD2 protein in Caco-2 cells is associated with an impairment of tight junction formation. We find that the FERM domain of FRMPD2 binds phosphatidylinositols and is sufficient for membrane localization. Moreover, we demonstrate that recruitment of FRMPD2 to cell-cell junctions is strictly E-cadherin-dependent, which is in line with our identification of catenin family proteins as binding partners for FRMPD2. We demonstrate that the FERM domain and binding of the PDZ2 domain to the armadillo protein p0071 are required for basolateral restriction of FRMPD2. Moreover, the PDZ2 domain of FRMPD2 is sufficient to partially redirect an apically localized protein to the basolateral membrane. Our results provide novel insights into the molecular function of FRMPD2 and into the targeting mechanism of peripheral membrane proteins in polarized epithelial cells.


Assuntos
Polaridade Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Domínios PDZ , Sequência de Aminoácidos , Animais , Proteínas do Domínio Armadillo/metabolismo , Biomarcadores/metabolismo , Caderinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Cães , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/química , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Fosfoproteínas/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas de Junções Íntimas , Junções Íntimas/metabolismo , beta Catenina/metabolismo
12.
Nat Chem ; 12(2): 145-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844194

RESUMO

New drugs are desperately needed to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report screening commercial kinase inhibitors for antibacterial activity and found the anticancer drug sorafenib as major hit that effectively kills MRSA strains. Varying the key structural features led to the identification of a potent analogue, PK150, that showed antibacterial activity against several pathogenic strains at submicromolar concentrations. Furthermore, this antibiotic eliminated challenging persisters as well as established biofilms. PK150 holds promising therapeutic potential as it did not induce in vitro resistance, and shows oral bioavailability and in vivo efficacy. Analysis of the mode of action using chemical proteomics revealed several targets, which included interference with menaquinone biosynthesis by inhibiting demethylmenaquinone methyltransferase and the stimulation of protein secretion by altering the activity of signal peptidase IB. Reduced endogenous menaquinone levels along with enhanced levels of extracellular proteins of PK150-treated bacteria support this target hypothesis. The associated antibiotic effects, especially the lack of resistance development, probably stem from the compound's polypharmacology.


Assuntos
Antibacterianos/uso terapêutico , Benzodioxóis/uso terapêutico , Reposicionamento de Medicamentos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/análogos & derivados , Sorafenibe/uso terapêutico , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Autólise/induzido quimicamente , Benzodioxóis/síntese química , Benzodioxóis/farmacocinética , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Sorafenibe/farmacocinética , Relação Estrutura-Atividade
13.
ACS Infect Dis ; 4(8): 1179-1187, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29801413

RESUMO

Promysalin, a secondary metabolite produced by P. putida RW10S1, is a narrow-spectrum antibiotic that targets P. aeruginosa over other Pseudomonas spp. P. putida KT2440, a nonproducing strain, displays increased swarming motility and decreased pyoverdine production in the presence of exogenous promysalin. Herein, proteomic and transcriptomic experiments were used to provide insight about how promysalin elicits responses in PPKT2440 and rationalize its species selectivity. RNA-sequencing results suggest that promysalin affects PPKT2440 by (1) increasing swarming in a flagella-independent manner; (2) causing cells to behave as if they were experiencing an iron-deficient environment, and (3) shifting metabolism away from glucose conversion to pyruvate via the Entner-Doudoroff pathway. These findings highlight nature's ability to develop small molecules with specific targets, resulting in exquisite selectivity.


Assuntos
Antibacterianos/farmacologia , Ferro/metabolismo , Locomoção/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Pseudomonas putida/efeitos dos fármacos , Pirrolidinas/farmacologia , Salicilamidas/farmacologia , Oligoelementos/metabolismo , Produtos Biológicos/farmacologia , Pseudomonas putida/fisiologia
14.
Nucleic Acids Res ; 30(20): 4380-6, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12384584

RESUMO

In the course of macronuclear differentiation in spirotrichous ciliates massive DNA reorganization processes take place, which include splicing, cutting, rearranging and eliminating specific DNA sequences. In order to identify genes involved in these processes we took advantage of suppression subtractive hybridization. We have identified three transcripts that are exclusively expressed during macronuclear development in the ciliate Stylonychia lemnae. Two of the three differentially expressed mRNAs we have analyzed encode for novel proteins. One gene, mdp1 [macronuclear development protein 1 (MDP1)], encodes a homolog of the PIWI protein family. PIWI proteins are involved in germline differentiation processes and RNA silencing in worms, flies, mice, humans and in plants. Possible functions of the S.lemnae PIWI related protein MDP1 in the regulation of macronuclear development will be discussed.


Assuntos
Núcleo Celular/genética , Cilióforos/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular , Núcleo Celular/ultraestrutura , Cilióforos/metabolismo , Cilióforos/ultraestrutura , Genes de Protozoários , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , RNA de Protozoário/biossíntese , Homologia de Sequência de Aminoácidos
15.
Sci Total Environ ; 409(17): 3197-205, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632092

RESUMO

This study reports column tests and modelling results to assess the impact of hardpans and cemented layers on oxygen supply in mine waste sediments. The analysed sediment samples were obtained from a low-sulphide and low-carbonate polymetallic mine waste tailings impoundment located in the Freiberg mining district in Germany. The three samples were characterised by different degrees and types of cementation. After physical and mineralogical properties of the samples had been determined, breakthrough curves of oxygen were measured in column studies at different degrees of water saturation, and the diffusivities were assessed using a numerical modelling approach. Results demonstrate that cemented layers and hardpans in undisturbed sediments associated with fine-grained material operate as preferential pathways for diffusive gas transport during rewetting, leading to higher oxygen diffusivities compared to disturbed sediments. Under air-dry conditions, the disturbed samples show higher diffusivities than the undisturbed sample, indicating clogging of the porosity by precipitation of secondary minerals such as trivalent Fe oxyhydroxides acting as a barrier and thereby decreasing the diffusivity of the undisturbed sample. In contrast to sediments without cementation, diffusion experiments of sediments with cemented layers used in this study yield similar tortuosities in spite of their different grain size distributions, pointing to the important role of these heterogeneities for gas diffusion.


Assuntos
Sedimentos Geológicos/química , Mineração , Modelos Químicos , Oxigênio/análise , Poluentes do Solo/análise , Resíduos/análise , Monitoramento Ambiental , Cinética
16.
Sci Total Environ ; 408(23): 5932-9, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20850166

RESUMO

This article reports fibre-optic oxygen measurements on a reactive mine waste heap located in the polymetallic sulphide mine district of Freiberg in south-eastern Germany. The heaped material consists of sulphide-bearing tailings from a processing plant of a lead-zinc mine. Mine waste material was deposited in the water phase after separation of mining ores in a flotation process. The tailing impoundment is partly covered with coarse sand and topsoil. Oxygen profiles were monitored during one year at eleven locations showing different physical and mineralogical compositions. At each location a borehole was drilled where the optic sensors were installed at 2-5 different depths. After installation the oxygen profiles were monitored seven times during one year from 2006-2007 and three to five oxygen profiles at each location were obtained. Oxygen measurements were accompanied by physical, chemical and mineralogical data of the tailing material. Additionally, a detailed mineralogical profile was analysed at a location representative for the central part of the heap, where the cemented layers show lateral continuity. Results showed that cemented layers have a significant influence on natural attenuation of the toxic As and Pb species owing to their capacity of water retention. The measured oxygen profiles are controlled by the zone of active pyrite weathering as well as by the higher water content in the cemented layers which reduces gaseous atmospheric oxygen supply. In contrast, gypsum bearing hardpans detected at three other locations have no detectable influence on oxygen profiles. Furthermore, the grain size distribution was proved to have a major effect on oxygen diffusivity due to its control on the water saturation. Temporal changes of the oxygen profiles were only observed at locations with coarse sediment material indicating also an important advective part of gas flux.


Assuntos
Chumbo , Mineração , Oxigênio/análise , Eliminação de Resíduos/métodos , Zinco , Monitoramento Ambiental , Sedimentos Geológicos/química , Alemanha , Resíduos Industriais/análise , Porosidade
17.
Biomol NMR Assign ; 1(2): 151-3, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19636852

RESUMO

Protein tyrosine phosphatase-basophil like (PTP-BL) represents a large multi domain non-transmembrane scaffolding protein that contains five PDZ domains. Here we report the backbone assignments of the PDZ2/PDZ3 tandem domain of PTP-BL. These assignments now provide a basis for the detailed structural investigation of the interaction between the PDZ domains 2 and 3 of PTP-BL. It will lead to a better understanding of the proposed scaffolding function of this tandem domain in multi-protein complexes assembled by PTB-BL.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Sequência de Aminoácidos , Isótopos de Carbono/química , Peso Molecular , Isótopos de Nitrogênio/química , Estrutura Terciária de Proteína , Prótons
18.
EMBO Rep ; 3(4): 349-54, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11897664

RESUMO

pEPI-1, a vector in which a chromosomal scaffold/matrix-attached region (S/MAR) is linked to the simian virus 40 origin of replication, is propagated episomally in CHO cells in the absence of the virally encoded large T-antigen and is stably maintained in the absence of selection pressure. It has been suggested that mitotic stability is provided by a specific interaction of this vector with components of the nuclear matrix. We studied the interactions of pEPI-1 by crosslinking with cis-diamminedichloroplatinum II, after which it is found to copurify with the nuclear matrix. In a south-western analysis, the vector shows exclusive binding to hnRNP-U/SAF-A, a multifunctional scaffold/matrix specific factor. Immunoprecipitation of the crosslinked DNA-protein complex demonstrates that pEPI-1 is bound to this protein in vivo. These data provide the first experimental evidence for the binding of an artificial episome to a nuclear matrix protein in vivo and the basis for understanding the mitotic stability of this novel vector class.


Assuntos
Vetores Genéticos/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Southwestern Blotting , Western Blotting , Células CHO , Cisplatino/metabolismo , Cricetinae , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Ribonucleoproteínas Nucleares Heterogêneas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA