Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(10): 663-679, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760900

RESUMO

Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing, integration of different environmental signals and activation of stress-response networks, thus contributing to the establishment of defence mechanisms and plant resilience. Recent advances in the study of ROS signalling in plants include the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing production, scavenging and transport has also increased. In this Review, we discuss these promising developments and how they might be used to increase plant resilience to environmental stress.


Assuntos
Plantas , Estresse Fisiológico , Hormônios/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 120(31): e2305496120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494396

RESUMO

Cell-to-cell communication is fundamental to multicellular organisms and unicellular organisms living in a microbiome. It is thought to have evolved as a stress- or quorum-sensing mechanism in unicellular organisms. A unique cell-to-cell communication mechanism that uses reactive oxygen species (ROS) as a signal (termed the "ROS wave") was identified in flowering plants. This process is essential for systemic signaling and plant acclimation to stress and can spread from a small group of cells to the entire plant within minutes. Whether a similar signaling process is found in other organisms is however unknown. Here, we report that the ROS wave can be found in unicellular algae, amoeba, ferns, mosses, mammalian cells, and isolated hearts. We further show that this process can be triggered in unicellular and multicellular organisms by a local stress or H2O2 treatment and blocked by the application of catalase or NADPH oxidase inhibitors and that in unicellular algae it communicates important stress-response signals between cells. Taken together, our findings suggest that an active process of cell-to-cell ROS signaling, like the ROS wave, evolved before unicellular and multicellular organisms diverged. This mechanism could have communicated an environmental stress signal between cells and coordinated the acclimation response of many different cells living in a community. The finding of a signaling process, like the ROS wave, in mammalian cells further contributes to our understanding of different diseases and could impact the development of drugs that target for example cancer or heart disease.


Assuntos
Peróxido de Hidrogênio , Transdução de Sinais , Animais , Espécies Reativas de Oxigênio , Comunicação Celular , Plantas , Mamíferos
3.
Plant Cell ; 34(8): 3047-3065, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35595231

RESUMO

Systemic acquired acclimation and wound signaling require the transmission of electrical, calcium, and reactive oxygen species (ROS) signals between local and systemic tissues of the same plant. However, whether such signals can be transmitted between two different plants is largely unknown. Here, we reveal a new type of plant-to-plant aboveground direct communication involving electrical signaling detected at the surface of leaves, ROS, and photosystem networks. A foliar electrical signal induced by wounding or high light stress applied to a single dandelion leaf can be transmitted to a neighboring plant that is in direct contact with the stimulated plant, resulting in systemic photosynthetic, oxidative, molecular, and physiological changes in both plants. Furthermore, similar aboveground changes can be induced in a network of plants serially connected via touch. Such signals can also induce responses even if the neighboring plant is from a different plant species. Our study demonstrates that electrical signals can function as a communication link between transmitter and receiver plants that are organized as a network (community) of plants. This process can be described as network-acquired acclimation.


Assuntos
Aclimatação , Plantas , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio , Transdução de Sinais/fisiologia
4.
Plant Cell ; 34(11): 4453-4471, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929088

RESUMO

Reactive oxygen species (ROS), produced by respiratory burst oxidase homologs (RBOHs) at the apoplast, play a key role in local and systemic cell-to-cell signaling, required for plant acclimation to stress. Here we reveal that the Arabidopsis thaliana leucine-rich-repeat receptor-like kinase H2O2-INDUCED CA2+ INCREASES 1 (HPCA1) acts as a central ROS receptor required for the propagation of cell-to-cell ROS signals, systemic signaling in response to different biotic and abiotic stresses, stress responses at the local and systemic tissues, and plant acclimation to stress, following a local treatment of high light (HL) stress. We further report that HPCA1 is required for systemic calcium signals, but not systemic membrane depolarization responses, and identify the calcium-permeable channel MECHANOSENSITIVE ION CHANNEL LIKE 3, CALCINEURIN B-LIKE CALCIUM SENSOR 4 (CBL4), CBL4-INTERACTING PROTEIN KINASE 26 and Sucrose-non-fermenting-1-related Protein Kinase 2.6/OPEN STOMATA 1 (OST1) as required for the propagation of cell-to-cell ROS signals. In addition, we identify serine residues S343 and S347 of RBOHD (the putative targets of OST1) as playing a key role in cell-to-cell ROS signaling in response to a local application of HL stress. Our findings reveal that HPCA1 plays a key role in mediating and coordinating systemic cell-to-cell ROS and calcium signals required for plant acclimation to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Arabidopsis/metabolismo , Aclimatação , Plantas/metabolismo , Canais de Cálcio/metabolismo , Transdução de Sinais , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant Physiol ; 191(2): 862-873, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173336

RESUMO

Plants can send long-distance cell-to-cell signals from a single tissue subjected to stress to the entire plant. This ability is termed "systemic signaling" and is essential for plant acclimation to stress and/or defense against pathogens. Several signaling mechanisms are associated with systemic signaling, including the reactive oxygen species (ROS) wave, calcium wave, hydraulic wave, and electric signals. The ROS wave coordinates multiple physiological, molecular, and metabolic responses among different parts of the plant and is essential for systemic acquired acclimation (SAA) to stress. In addition, it is linked with several plant hormones, including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). However, how these plant hormones modulate the ROS wave and whether they are required for SAA is not clear. Here we report that SA and JA play antagonistic roles in modulating the ROS wave in Arabidopsis (Arabidopsis thaliana). While SA augments the ROS wave, JA suppresses it during responses to local wounding or high light (HL) stress treatments. We further show that ethylene and ABA are essential for regulation of the ROS wave during systemic responses to local wounding treatment. Interestingly, we found that the redox-response protein NONEXPRESSOR OF PATHOGENESIS RELATED PROTEIN 1 is required for systemic ROS accumulation in response to wounding or HL stress, as well as for SAA to HL stress. Taken together, our findings suggest that interplay between JA and SA might regulate systemic signaling and SAA during responses of plants to abiotic stress or wounding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo
6.
Plant Cell Environ ; 47(8): 2842-2851, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38515255

RESUMO

Reactive oxygen species (ROS) play a critical role in plant development and stress responses, acting as key components in rapid signalling pathways. The 'ROS wave' triggers essential acclimation processes, ultimately ensuring plant survival under diverse challenges. This review explores recent advances in understanding the composition and functionality of the ROS wave within plant cells. During their initiation and propagation, ROS waves interact with other rapid signalling pathways, hormones and various molecular compounds. Recent research sheds light on the intriguing lack of a rigid hierarchy governing these interactions, highlighting a complex interplay between diverse signals. Notably, ROS waves culminate in systemic acclimation, a crucial outcome for enhanced stress tolerance. This review emphasizes the versatility of ROS, which act as flexible players within a network of short- and long-term factors contributing to plant stress resilience. Unveiling the intricacies of these interactions between ROS and various signalling molecules holds immense potential for developing strategies to augment plant stress tolerance, contributing to improved agricultural practices and overall ecosystem well-being.


Assuntos
Aclimatação , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Reguladores de Crescimento de Plantas/metabolismo
7.
New Phytol ; 237(5): 1711-1727, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36401805

RESUMO

Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
8.
Plant Physiol ; 189(3): 1314-1325, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35348752

RESUMO

Mechanical wounding occurs in plants during biotic or abiotic stresses and is associated with the activation of long-distance signaling pathways that trigger wound responses in systemic tissues. Among the different systemic signals activated by wounding are electric signals, calcium, hydraulic, and reactive oxygen species (ROS) waves. The release of glutamate (Glu) from cells at the wounded tissues was recently proposed to trigger systemic signal transduction pathways via GLU-LIKE RECEPTORs (GLRs). However, the role of another important compound released from cells during wounding (extracellular ATP [eATP]) in triggering systemic responses is not clear. Here, we show in Arabidopsis (Arabidopsis thaliana) that wounding results in the accumulation of nanomolar levels of eATP and that these levels are sufficient to trigger the systemic ROS wave. We further show that the triggering of the ROS wave by eATP during wounding requires the PURINORECEPTOR 2 KINASE (P2K) receptor. Application of eATP to unwounded leaves triggered the ROS wave, and the activation of the ROS wave by wounding or eATP application was suppressed in mutants deficient in P2Ks (e.g. p2k1-3, p2k2, and p2k1-3p2k2). In addition, expression of systemic wound response (SWR) transcripts was suppressed in mutants deficient in P2Ks during wounding. Interestingly, the effect of Glu and eATP application on ROS wave activation was not additive, suggesting that these two compounds function in the same pathway to trigger the ROS wave. Our findings reveal that in addition to sensing Glu via GLRs, eATP sensed by P2Ks plays a key role in the triggering of SWRs in plants.


Assuntos
Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Plant Cell ; 32(11): 3425-3435, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938754

RESUMO

Systemic signaling and systemic acquired acclimation (SAA) are essential for plant survival during episodes of environmental stress. Recent studies highlighted a key role for reactive oxygen species (ROS) signaling in mediating systemic responses and SAA during light stress in Arabidopsis (Arabidopsis thaliana). These studies further identified the RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) protein as a key player in mediating rapid systemic ROS responses. Here, we report that tissue-specific expression of RBOHD in phloem or xylem parenchyma cells of the rbohD mutant restores systemic ROS signaling, systemic stress-response transcript expression, and SAA to a local treatment of light stress. We further demonstrate that RBOHD and RBOHF are both required for local and systemic ROS signaling at the vascular bundles of Arabidopsis. Taken together, our findings highlight a key role for RBOHD-driven ROS production at the vascular bundles of Arabidopsis in mediating light stress-induced systemic signaling and SAA. In addition, they suggest that the integration of ROS, calcium, electric, and hydraulic signals, during systemic signaling, occurs at the vascular bundles.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Luz , Mutação , NADPH Oxidases/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(24): 13810-13820, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471943

RESUMO

Extreme environmental conditions, such as heat, salinity, and decreased water availability, can have a devastating impact on plant growth and productivity, potentially resulting in the collapse of entire ecosystems. Stress-induced systemic signaling and systemic acquired acclimation play canonical roles in plant survival during episodes of environmental stress. Recent studies revealed that in response to a single abiotic stress, applied to a single leaf, plants mount a comprehensive stress-specific systemic response that includes the accumulation of many different stress-specific transcripts and metabolites, as well as a coordinated stress-specific whole-plant stomatal response. However, in nature plants are routinely subjected to a combination of two or more different abiotic stresses, each potentially triggering its own stress-specific systemic response, highlighting a new fundamental question in plant biology: are plants capable of integrating two different systemic signals simultaneously generated during conditions of stress combination? Here we show that plants can integrate two different systemic signals simultaneously generated during stress combination, and that the manner in which plants sense the different stresses that trigger these signals (i.e., at the same or different parts of the plant) makes a significant difference in how fast and efficient they induce systemic reactive oxygen species (ROS) signals; transcriptomic, hormonal, and stomatal responses; as well as plant acclimation. Our results shed light on how plants acclimate to their environment and survive a combination of different abiotic stresses. In addition, they highlight a key role for systemic ROS signals in coordinating the response of different leaves to stress.


Assuntos
Plantas/metabolismo , Ecossistema , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico
11.
Plant J ; 107(1): 7-20, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058040

RESUMO

The sensing of abiotic stress, mechanical injury or pathogen attack by a single plant tissue results in the activation of systemic signals that travel from the affected tissue to the entire plant. This process is essential for plant survival during stress and is termed systemic signaling. Among the different signals triggered during this process are calcium, electric, reactive oxygen species and hydraulic signals. These are thought to propagate at rapid rates through the plant vascular bundles and to regulate many of the systemic processes essential for plant survival. Although the different signals activated during systemic signaling are thought to be interlinked, their coordination and hierarchy still need to be determined. Here, using a combination of advanced whole-plant imaging and hydraulic pressure measurements, we studied the activation of all four systemic signals in wild-type and different Arabidopsis thaliana mutants subjected to a local treatment of high-light (HL) stress or wounding. Our findings reveal that activation of systemic membrane potential, calcium, reactive oxygen species and hydraulic pressure signals, in response to wounding, is dependent on glutamate receptor-like proteins 3.3 and 3.6. In contrast, in response to HL stress, systemic changes in calcium and membrane potential depended on glutamate receptor-like 3.3 and 3.6, while systemic hydraulic signals did not. We further show that plasmodesmata functions are required for systemic changes in membrane potential and calcium during responses to HL stress or wounding. Our findings shed new light on the different mechanisms that integrate different systemic signals in plants during stress.


Assuntos
Arabidopsis/metabolismo , Sinalização do Cálcio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Potenciais da Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Plasmodesmos/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Transdução de Sinais , Estresse Fisiológico
12.
Plant J ; 105(2): 459-476, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33015917

RESUMO

Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Aclimatação/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Estresse Fisiológico/fisiologia
13.
New Phytol ; 235(2): 611-629, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441705

RESUMO

Heat waves occurring during droughts can have a devastating impact on yield, especially if they happen during the flowering and seed set stages of the crop cycle. Global warming and climate change are driving an alarming increase in the frequency and intensity of combined drought and heat stress episodes, critically threatening global food security. Because high temperature is detrimental to reproductive processes, essential for plant yield, we measured the inner temperature, transpiration, sepal stomatal aperture, hormone concentrations and transcriptomic response of closed soybean flowers developing on plants subjected to a combination of drought and heat stress. Here, we report that, during a combination of drought and heat stress, soybean plants prioritize transpiration through flowers over transpiration through leaves by opening their flower stomata, while keeping their leaf stomata closed. This acclimation strategy, termed 'differential transpiration', lowers flower inner temperature by about 2-3°C, protecting reproductive processes at the expense of vegetative tissues. Manipulating stomatal regulation, stomatal size and/or stomatal density of flowers could serve as a viable strategy to enhance the yield of different crops and mitigate some of the current and future impacts of global warming and climate change on agriculture.


Assuntos
Secas , Estômatos de Plantas , Produtos Agrícolas , Flores , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Estresse Fisiológico
14.
J Exp Bot ; 73(1): 324-338, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34499172

RESUMO

Iron (Fe) is an essential micronutrient whose uptake is tightly regulated to prevent either deficiency or toxicity. Cadmium (Cd) is a non-essential element that induces both Fe deficiency and toxicity; however, the mechanisms behind these Fe/Cd-induced responses are still elusive. Here we explored Cd- and Fe-associated responses in wild-type Arabidopsis and in a mutant that overaccumulates Fe (opt3-2). Gene expression profiling revealed a large overlap between transcripts induced by Fe deficiency and Cd exposure. Interestingly, the use of opt3-2 allowed us to identify additional gene clusters originally induced by Cd in the wild type but repressed in the opt3-2 background. Based on the high levels of H2O2 found in opt3-2, we propose a model where reactive oxygen species prevent the induction of genes that are induced in the wild type by either Fe deficiency or Cd. Interestingly, a defined cluster of Fe-responsive genes was found to be insensitive to this negative feedback, suggesting that their induction by Cd is more likely to be the result of an impaired Fe sensing. Overall, our data suggest that Fe deficiency responses are governed by multiple inputs and that a hierarchical regulation of Fe homeostasis prevents the induction of specific networks when Fe and H2O2 levels are elevated.


Assuntos
Proteínas de Arabidopsis , Cádmio , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Ferro/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio
15.
Plant J ; 102(5): 887-896, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31943489

RESUMO

Rapidly communicating the perception of an abiotic stress event, wounding or pathogen infection, from its initial site of occurrence to the entire plant, i.e. rapid systemic signaling, is essential for successful plant acclimation and defense. Recent studies highlighted an important role for several rapid whole-plant systemic signals in mediating plant acclimation and defense during different abiotic and biotic stresses. These include calcium, reactive oxygen species (ROS), hydraulic and electric waves. Although the role of some of these signals in inducing and coordinating whole-plant systemic responses was demonstrated, many questions related to their mode of action, routes of propagation and integration remain unanswered. In addition, it is unclear how these signals convey specificity to the systemic response, and how are they integrated under conditions of stress combination. Here we highlight many of these questions, as well as provide a proposed model for systemic signal integration, focusing on the ROS wave.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia
16.
Plant Physiol ; 184(2): 666-675, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32699028

RESUMO

Systemic acquired acclimation (SAA) is a key biological process essential for plant survival under conditions of abiotic stress. SAA was recently shown to be controlled by a rapid systemic signaling mechanism termed the reactive oxygen species (ROS) wave in Arabidopsis (Arabidopsis thaliana). MYB30 is a key transcriptional regulator mediating many different biological processes. MYB30 was found to act downstream of the ROS wave in systemic tissues of Arabidopsis in response to local high light (HL) stress treatment. However, the function of MYB30 in systemic signaling and SAA is unknown. To determine the relationship among MYB30, the ROS wave, and systemic acclimation in Arabidopsis, the SAA response to HL stress of myb30 mutants and wild-type plants was determined. Although myb30 plants were found to display enhanced rates of ROS wave propagation and their local tissues acclimated to the HL stress, they were deficient in SAA to HL stress. Compared to wild type, the systemic transcriptomic response of myb30 plants was also deficient, lacking in the expression of over 3,500 transcripts. A putative set of 150 core transcripts directly associated with MYB30 function during HL stress was determined. Our study identifies MYB30 as a key regulator that links systemic ROS signaling with systemic transcriptomic responses, SAA, and plant acclimation to HL stress. In addition, it demonstrates that plant acclimation and systemic ROS signaling are interlinked and that the lack of systemic acclimation drives systemic ROS signaling to occur at faster rates, suggesting a feedback mechanism (potentially involving MYB30) between these two processes.


Assuntos
Aclimatação , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis , Plantas Geneticamente Modificadas
17.
Physiol Plant ; 172(1): 41-52, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33179765

RESUMO

A combination of drought and heat stress, occurring at the vegetative or reproductive growth phase of many different crops can have a devastating impact on yield. In soybean (Glycine max), a considerable effort has been made to develop genotypes with enhanced yield production under conditions of drought or heat stress. However, how these genotypes perform in terms of growth, physiological responses, and most importantly seed production, under conditions of drought and heat combination is mostly unknown. Here, we studied the impact of water deficit and heat stress combination on the physiology, seed production, and yield per plant of two soybean genotypes, Magellan and Plant Introduction (PI) 548313, that differ in their reproductive responses to heat stress. Our findings reveal that although PI 548313 produced more seeds than Magellan under conditions of heat stress, under conditions of water deficit, and heat stress combination its seed production decreased. Because the number of flowers and pollen germination of PI 548313 remained high under heat or water deficit and heat combination, the reduced seed production exhibited by PI 548313 under the stress combination could be a result of processes that occur at the stigma, ovaries and/or other parts of the flower following pollen germination.


Assuntos
Glycine max , Água , Secas , Resposta ao Choque Térmico/genética , Sementes/genética , Glycine max/genética
20.
Free Radic Biol Med ; 222: 165-172, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851517

RESUMO

Reactive oxygen species (ROS) play a crucial role as signaling molecules in both plant and animal cells, enabling rapid responses to various stimuli. Among the many cellular mechanisms used to generate and transduce ROS signals, ROS-induced-ROS release (RIRR) is emerging as an important pathway involved in the responses of various multicellular and unicellular organisms to environmental stresses. In RIRR, one cellular compartment, organelle, or cell generates or releases ROS, triggering an increased ROS production and release by another compartment, organelle, or cell, thereby giving rise to a fast propagating ROS wave. This RIRR-based signal relay has been demonstrated to facilitate mitochondria-to-mitochondria communication in animal cells and long-distance systemic signaling in plants in response to biotic and abiotic stresses. More recently, it has been discovered that different unicellular microorganism communities also exhibit a RIRR cell-to-cell signaling process triggered by a localized stress treatment. However, the precise mechanism underlying the propagation of the ROS signal among cells within these unicellular communities remained elusive. In this study, we employed a reaction-diffusion model incorporating the RIRR mechanism to analyze the propagation of ROS-mediated signals. By effectively balancing production and scavenging processes, our model successfully reproduces the experimental ROS signal velocities observed in unicellular green algae (Chlamydomonas reinhardtii) colonies grown on agar plates, furthering our understanding of intercellular ROS communication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA