Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473716

RESUMO

Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.


Assuntos
Células-Tronco Mesenquimais , Espermidina , Humanos , Espermidina/metabolismo , Espermina/metabolismo , Espermina Sintase/genética , Ornitina Descarboxilase/metabolismo , Osteogênese , Poliaminas/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762630

RESUMO

Corneal wound healing is a complex biological process that integrates a host of different signals to coordinate cell behavior. Upon wounding, there is the generation of an endogenous wound electric field that serves as a powerful cue to guide cell migration. Concurrently, the corneal epithelium reduces sialylated glycoforms, suggesting that sialylation plays an important role during electrotaxis. Here, we show that pretreating human telomerase-immortalized corneal epithelial (hTCEpi) cells with a sialyltransferase inhibitor, P-3FAX-Neu5Ac (3F-Neu5Ac), improves electrotaxis by enhancing directionality, but not speed. This was recapitulated using Kifunensine, which inhibits cleavage of mannoses and therefore precludes sialylation on N-glycans. We also identified that 3F-Neu5Ac enhanced the responsiveness of the hTCEpi cell population to the electric field and that pretreated hTCEpi cells showed increased directionality even at low voltages. Furthermore, when we increased sialylation using N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz), hTCEpi cells showed a decrease in both speed and directionality. Importantly, pretreating enucleated eyes with 3F-Neu5Ac significantly improved re-epithelialization in an ex vivo model of a corneal injury. Finally, we show that in hTCEpi cells, sialylation is increased by growth factor deprivation and reduced by PDGF-BB. Taken together, our results suggest that during corneal wound healing, reduced sialylated glycoforms enhance electrotaxis and re-epithelialization, potentially opening new avenues to promote corneal wound healing.


Assuntos
Lesões da Córnea , Epitélio Corneano , Humanos , Córnea , Epitélio Corneano/metabolismo , Células Epiteliais/metabolismo , Cicatrização , Reepitelização , Lesões da Córnea/terapia , Lesões da Córnea/metabolismo
3.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003435

RESUMO

For hundreds of indications, mesenchymal stromal cells (MSCs) have not achieved the expected therapeutic efficacy due to an inability of the cells to reach target tissues. We show that inducing high mannose N-glycans either chemically, using the mannosidase I inhibitor Kifunensine, or genetically, using an shRNA to silence the expression of mannosidase I A1 (MAN1A1), strongly increases the motility of MSCs. We show that treatment of MSCs with Kifunensine increases cell migration toward bone fracture sites after percutaneous injection, and toward lungs after intravenous injection. Mechanistically, high mannose N-glycans reduce the contact area of cells with its substrate. Silencing MAN1A1 also makes cells softer, suggesting that an increase of high mannose N-glycoforms may change the physical properties of the cell membrane. To determine if treatment with Kifunensine is feasible for future clinical studies, we used mass spectrometry to analyze the N-glycan profile of MSCs over time and demonstrate that the effect of Kifunensine is both transitory and at the expense of specific N-glycoforms, including fucosylations. Finally, we also investigated the effect of Kifunensine on cell proliferation, differentiation, and the secretion profile of MSCs. Our results support the notion of inducing high mannose N-glycans in MSCs in order to enhance their migration potential.


Assuntos
Movimento Celular/genética , Manosidases/genética , Células-Tronco Mesenquimais/metabolismo , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/farmacologia , Glicosilação , Humanos , Manose , Polissacarídeos/metabolismo
4.
Transfusion ; 59(S1): 893-897, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30383901

RESUMO

Mesenchymal stem/stromal cells (MSCs) may be able to improve ischemic conditions as they can actively seek out areas of low oxygen and secrete proangiogenic factors. In more severe trauma and chronic cases, however, cells alone may not be enough. Therefore, we have combined the stem cell and angiogenic factor approaches to make a more potent therapy. We developed an engineered stem cell therapy product designed to treat critical limb ischemia that could also be used in trauma-induced scarring and fibrosis where additional collateral blood flow is needed following damage to and blockage of the primary vessels. We used MSCs from normal human donor marrow and engineered them to produce high levels of the angiogenic factor vascular endothelial growth factor (VEGF). The MSC/VEGF product has been successfully developed and characterized using good manufacturing practice (GMP)-compliant methods, and we have completed experiments showing that MSC/VEGF significantly increased blood flow in the ischemic limb of immune deficient mice, compared to the saline controls in each study. We also performed safety studies demonstrating that the injected product does not cause harm and that the cells remain around the injection site for more than 1 month after hypoxic preconditioning. An on-demand formulation system for delivery of the product to clinical sites that lack cell processing facilities is in development.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais , Cicatrização/fisiologia
5.
Stem Cells ; 35(6): 1461-1467, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28390147

RESUMO

Bone remodeling is a lifelong process in which mature bone tissue is removed from the skeleton by bone resorption and is replenished by new during ossification or bone formation. The remodeling cycle requires both the differentiation and activation of two cell types with opposing functions; the osteoclast, which orchestrates bone resorption, and the osteoblast, which orchestrates bone formation. The differentiation of these cells from their respective precursors is a process which has been overshadowed by enigma, particularly because the precise osteoclast precursor has not been identified and because the identification of skeletal stem cells, which give rise to osteoblasts, is very recent. Latest advances in the area of stem cell biology have enabled us to gain a better understanding of how these differentiation processes occur in physiological and pathological conditions. In this review we postulate that modulation of stem cells during inflammatory conditions is a necessary prerequisite of bone remodeling and therefore an essential new component to the field of osteoimmunology. In this context, we highlight the role of transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1), because it directly links inflammation with differentiation of osteoclasts and osteoblasts. Stem Cells 2017;35:1461-1467.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/imunologia , Células-Tronco/citologia , Animais , Reabsorção Óssea , Humanos , Modelos Biológicos , Osteoclastos/citologia , Osteogênese
6.
J Cell Biochem ; 117(9): 2128-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26888666

RESUMO

Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Células da Medula Óssea/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGA2/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Células da Medula Óssea/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
7.
J Cell Biochem ; 117(2): 300-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26212931

RESUMO

Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells.


Assuntos
Diglicerídeos/biossíntese , Células-Tronco Mesenquimais/metabolismo , Proteínas Angiogênicas/metabolismo , Hipóxia Celular , Movimento Celular , Células Cultivadas , Células Endoteliais/fisiologia , Humanos , Metabolismo dos Lipídeos , Neovascularização Fisiológica
8.
Stem Cells ; 33(6): 1818-28, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25702874

RESUMO

Mesenchymal stem cells/multipotent stromal cells (MSCs) are promising therapeutics for a variety of conditions. However, after transplantation, cell retention remains extremely challenging. Given that many hypoxic signals are transitory and that the therapeutic administration of MSCs is typically into tissues that are normally hypoxic, we studied the effect of hypoxic preconditioning (HP) prior to new exposure to hypoxia. We show that preincubation for 2 days or more in 1% oxygen reduces serum deprivation-mediated cell death, as observed by higher cell numbers and lower incorporation of EthD-III and Annexin V. Consistently, HP-MSCs expressed significantly lower levels of cytochrome c and heme oxygenase 1 as compared to controls. Most importantly, HP-MSCs showed enhanced survival in vivo after intramuscular injection into immune deficient NOD/SCID-IL2Rgamma(-/-) mice. Interestingly, HP-MSCs consume glucose and secrete lactate at a slower rate than controls, possibly promoting cell survival, as glucose remains available to the cells for longer periods of time. In addition, we compared the metabolome of HP-MSCs to controls, before and after hypoxia and serum deprivation, and identified several possible mediators for HP-mediated cell survival. Overall, our findings suggest that preincubation of MSCs for 2 days or more in hypoxia induces metabolic changes that yield higher retention after transplantation.


Assuntos
Hipóxia/metabolismo , Precondicionamento Isquêmico , Células-Tronco Mesenquimais/citologia , Animais , Morte Celular/fisiologia , Hipóxia Celular/fisiologia , Sobrevivência Celular , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos Endogâmicos NOD , Camundongos SCID
9.
Stem Cells ; 32(5): 1074-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24860868

RESUMO

Multipotent mesenchymal stromal cells (MSCs) are ideal candidates for different cellular therapies due to their simple isolation, extensive expansion potential, and low immunogenicity. For various therapeutic approaches, such as bone and cartilage repair, MSCs are expected to contribute by direct differentiation to replace the damaged tissue, while many other applications rely on the secretion of paracrine factors which modulate the immune response and promote angiogenesis. MicroRNAs (miRNAs), which target messenger RNA for cleavage or translational repression, have recently been shown to play critical functions in MSC to regulate differentiation, paracrine activity, and other cellular properties such as proliferation, survival, and migration. The global miRNA expression profile of MSC varies according to the tissue of origin, species, and detection methodology, while also certain miRNAs are consistently found in all types of MSC. The function in MSC of more than 60 different miRNAs has been recently described, which is the subject of this review. A special emphasis is given to miRNAs that have demonstrated a function in MSC in vivo. We also present in detail miRNAs with overlapping effects (i.e., common target genes) and discuss future directions to deepen our understanding of miRNA biology in MSC. These recent discoveries have opened the possibility of modulating miRNAs in MSC, in order to enhance their proregenerative, therapeutic potential.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Células-Tronco Mesenquimais/citologia
10.
Biochim Biophys Acta ; 1833(12): 3396-3404, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24135056

RESUMO

The composition of the hematopoietic stem cell (HSC) niche within the bone marrow is highly dynamic, tightly regulated, and of importance for various HSC properties. Integrins are important molecules within this niche that influence those properties through the interactions of HSCs and mesenchymal stem cells (MSCs). Here we investigated the function of miR-134 in integrin regulation in MSCs. In MSCs, miR-134 post-transcriptionally regulated ß1 integrin expression. This negative regulation of ß1 integrin was mediated by the binding of miR-134 to its 3' untranslated region, which contains two conserved binding sites for miR-134. The miR-134-mediated silencing of ß1 integrin in MSCs was shown by atomic force microscopy to decrease the adhesion of 32D cells to MSCs transfected with miR-134. Furthermore, the adhesion of MSCs to fibronectin was reduced after transfection with miR-134. MSCs from patients with myelodysplastic syndrome (MDS) revealed highly significant miR-134 overexpression compared with MSCs from healthy bone marrow donors. MSCs from MDS patients showed lower ß1 integrin protein, but not lower mRNA, expression, suggesting post-transcriptional regulation. The present study demonstrates miR-134-mediated negative regulation of ß1 integrin that influences cell adhesion to and of MSCs. These results further contribute to our understanding of the complexity of MDS.


Assuntos
Integrina beta1/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Sítios de Ligação , Adesão Celular/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Ligação Proteica/genética , Transfecção , Adulto Jovem
11.
Haematologica ; 99(6): 997-1005, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24584347

RESUMO

The chemokine CXCL12 regulates the interaction between hematopoietic stem and progenitor cells and bone marrow stromal cells. Although its relevance in the bone marrow niche is well recognized, the regulation of CXCL12 by microRNA is not completely understood. We transfected a library of 486 microRNA in the bone marrow stromal cell line SCP-1 and studied the expression of CXCL12. Twenty-seven microRNA were shown to downregulate expression of CXCL12. Eight microRNA (miR-23a, 130b, 135, 200b, 200c, 216, 222, and 602) interacted directly with the 3'UTR of CXCL12. Next, we determined that only miR-23a is predicted to bind to the 3'UTR and is strongly expressed in primary bone marrow stromal cells. Modulation of miR-23a changes the migratory potential of hematopoietic progenitor cells in co-culture experiments. We discovered that TGFB1 mediates its inhibitory effect on CXCL12 levels by upregulation of miR-23a. This process was partly reversed by miR-23a molecules. Finally, we determined an inverse expression of CXCL12 and miR-23a in stromal cells from patients with myelodys-plastic syndrome indicating that the interaction has a pathophysiological role. Here, we show for the first time that CXCL12-targeting miR23a regulates the functional properties of the hematopoietic niche.


Assuntos
Quimiocina CXCL12/genética , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA , Linhagem Celular , Expressão Gênica , Humanos , Síndromes Mielodisplásicas/genética , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Transfecção
12.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496556

RESUMO

Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE: Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk.

13.
Sci Rep ; 13(1): 18439, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891179

RESUMO

Mucopolysaccharidosis III (MPSIII, Sanfilippo syndrome) is a devastating lysosomal storage disease that primarily affects the central nervous system. MPSIIIA is caused by loss-of-function mutations in the gene coding for sulfamidase (N-sulfoglucosamine sulfohydrolase/SGSH) resulting in SGSH enzyme deficiency, a buildup of heparin sulfate and subsequent neurodegeneration. There is currently no cure or disease modifying treatment for MPSIIIA. A mouse model for MPSIIIA was characterized in 1999 and later backcrossed onto the C57BL/6 background. In the present study, a novel immune deficient MPSIIIA mouse model (MPSIIIA-TKO) was created by backcrossing the immune competent, C57BL/6 MPSIIIA mouse to an immune deficient mouse model lacking Rag2, CD47 and Il2rg genes. The resulting mouse model has undetectable SGSH activity, exhibits histological changes consistent with MPSIIIA and lacks T cells, B cells and NK cells. This new mouse model has the potential to be extremely useful in testing human cellular therapies in an animal model as it retains the MPSIIIA disease phenotype while tolerating xenotransplantation.


Assuntos
Mucopolissacaridose III , Animais , Humanos , Camundongos , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Camundongos Endogâmicos C57BL , Hidrolases/genética , Fenótipo , Modelos Animais de Doenças
14.
Stem Cells ; 29(11): 1727-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898687

RESUMO

A key mechanism for mesenchymal stem cells/bone marrow stromal cells (MSCs) to promote tissue repair is by secretion of soluble growth factors (GFs). Therefore, clinical application could be optimized by a combination of cell and gene therapies, where MSCs are genetically modified to express higher levels of a specific factor. However, it remains unknown how this overexpression may alter the fate of the MSCs. Here, we show effects of overexpressing the growth factors, such as basic fibroblast growth factor (bFGF), platelet derived growth factor B (PDGF-BB), transforming growth factor ß(1) (TGF-ß(1) ), and vascular endothelial growth factor (VEGF), in human bone marrow-derived MSCs. Ectopic expression of bFGF or PDGF-B lead to highly proliferating MSCs and lead to a robust increase in osteogenesis. In contrast, adipogenesis was strongly inhibited in MSCs overexpressing PDGF-B and only mildly affected in MSCs overexpressing bFGF. Overexpression of TGF-ß(1) blocked both osteogenic and adipogenic differentiation while inducing the formation of stress fibers and increasing the expression of the smooth muscle marker calponin-1 and the chondrogenic marker collagen type II. In contrast, MSCs overexpressing VEGF did not vary from control MSCs in any parameters, likely due to the lack of VEGF receptor expression on MSCs. MSCs engineered to overexpress VEGF strongly induced the migration of endothelial cells and enhanced blood flow restoration in a xenograft model of hind limb ischemia. These data support the rationale for genetically modifying MSCs to enhance their therapeutically relevant trophic signals, when safety and efficacy can be demonstrated, and when it can be shown that there are no unwanted effects on their proliferation and differentiation.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Células-Tronco Mesenquimais/citologia , Células Estromais/citologia , Adipogenia/genética , Adipogenia/fisiologia , Animais , Western Blotting , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/terapia , Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Mutantes , Osteogênese/genética , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Front Mol Neurosci ; 14: 789913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153670

RESUMO

Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.

16.
Haematologica ; 95(4): 542-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20145267

RESUMO

BACKGROUND: Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and 'stemness' of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion. DESIGN AND METHODS: In the co-culture system, we defined three distinct localizations of hematopoietic stem cells relative to the mesenchymal stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the mesenchymal stromal cells (phase-dim cells). Cell cycle, proliferation, cell division and immunophenotype of these three cell fractions were evaluated from day 1 to 7. RESULTS: Phase-bright cells contained the highest proportion of cycling progenitors during co-culture. In contrast, phase-dim cells divided much more slowly and retained a more immature phenotype compared to the other cell fractions. The phase-dim compartment was soon enriched for CD34(+)/CD38(-) cells. Migration beneath the mesenchymal stromal cell layer could be hampered by inhibiting integrin beta1 or CXCR4. CONCLUSIONS: Our data suggest that the mesenchymal stromal cell surface is the predominant site of proliferation of hematopoietic stem cells, whereas the compartment beneath the mesenchymal stromal cell layer seems to mimic the stem cell niche for more immature cells. The SDF-1/CXCR4 interaction and integrin-mediated cell adhesion play important roles in the distribution of hematopoietic stem cells in the co-culture system.


Assuntos
Células-Tronco Hematopoéticas/citologia , Mesoderma/citologia , Células Estromais/citologia , Células da Medula Óssea/metabolismo , Adesão Celular , Técnicas de Cultura de Células , Ciclo Celular , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Integrina beta1/metabolismo , Mesoderma/metabolismo , Receptores CXCR4/metabolismo , Células Estromais/metabolismo
17.
18.
Sci Rep ; 9(1): 15395, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659216

RESUMO

Patients with Snyder-Robinson Syndrome (SRS) exhibit deficient Spermidine Synthase (SMS) gene expression, which causes neurodevelopmental defects and osteoporosis, often leading to extremely fragile bones. To determine the underlying mechanism for impaired bone formation, we modelled the disease by silencing SMS in human bone marrow - derived multipotent stromal cells (MSCs) derived from healthy donors. We found that silencing SMS in MSCs led to reduced cell proliferation and deficient bone formation in vitro, as evidenced by reduced mineralization and decreased bone sialoprotein expression. Furthermore, transplantation of MSCs in osteoconductive scaffolds into immune deficient mice shows that silencing SMS also reduces ectopic bone formation in vivo. Tag-Seq Gene Expression Profiling shows that deficient SMS expression causes strong transcriptome changes, especially in genes related to cell proliferation and metabolic functions. Similarly, metabolome analysis by mass spectrometry, shows that silencing SMS strongly impacts glucose metabolism. This was consistent with observations using electron microscopy, where SMS deficient MSCs show high levels of mitochondrial fusion. In line with these findings, SMS deficiency causes a reduction in glucose consumption and increase in lactate secretion. Our data also suggests that SMS deficiency affects iron metabolism in the cells, which we hypothesize is linked to deficient mitochondrial function. Altogether, our studies suggest that SMS deficiency causes strong transcriptomic and metabolic changes in MSCs, which are likely associated with the observed impaired osteogenesis both in vitro and in vivo.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Osteogênese , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Espermina Sintase/genética , Transcriptoma
19.
Genes (Basel) ; 9(4)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621187

RESUMO

Noncanonical WNT pathways function independently of the ß-catenin transcriptional co-activator to regulate diverse morphogenetic and pathogenic processes. Recent studies showed that noncanonical WNTs, such as WNT5A, can signal the degradation of several downstream effectors, thereby modulating these effectors' cellular activities. The protein domain(s) that mediates the WNT5A-dependent degradation response, however, has not been identified. By coupling protein mutagenesis experiments with a flow cytometry-based degradation reporter assay, we have defined a protein domain in the kinesin superfamily protein KIF26B that is essential for WNT5A-dependent degradation. We found that a human disease-causing KIF26B mutation located at a conserved amino acid within this domain compromises the ability of WNT5A to induce KIF26B degradation. Using pharmacological perturbation, we further uncovered a role of glycogen synthase kinase 3 (GSK3) in WNT5A regulation of KIF26B degradation. Lastly, based on the identification of the WNT5A-responsive domain, we developed a new reporter system that allows for efficient profiling of WNT5A-KIF26B signaling activity in both somatic and stem cells. In conclusion, our study identifies a new protein domain that mediates WNT5A-dependent degradation of KIF26B and provides a new tool for functional characterization of noncanonical WNT5A signaling in cells.

20.
Stem Cell Reports ; 11(2): 325-333, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29983388

RESUMO

Since hundreds of clinical trials are investigating the use of multipotent stromal cells (MSCs) for therapeutic purposes, effective delivery of the cells to target tissues is critical. We have found an unexplored mechanism, by which basic fibroblast growth factor (FGF2) induces expression of fucosyltransferase 8 (FUT8) to increase core fucosylations of N-linked glycans of membrane-associated proteins, including several integrin subunits. Gain- and loss-of-function experiments show that FUT8 is both necessary and sufficient to induce migration of MSCs. Silencing FUT8 also affects migration of MSCs in zebrafish embryos and a murine bone fracture model. Finally, we use in silico modeling to show that core fucosylations restrict the degrees of freedom of glycans on the integrin's surface, hence stabilizing glycans on a specific position. Altogether, we show a mechanism whereby FGF2 promotes migration of MSCs by modifying N-glycans. This work may help improve delivery of MSCs in therapeutic settings.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Integrinas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Polissacarídeos/metabolismo , Animais , Movimento Celular/genética , Fator 2 de Crescimento de Fibroblastos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicosilação , Humanos , Integrinas/química , Camundongos , Modelos Moleculares , Conformação Molecular , Polissacarídeos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA