RESUMO
A central assumption in the perceptual attunement literature holds that exposure to a speech sound contrast leads to improvement in native speech sound processing. However, whether the amount of exposure matters for this process has not been put to a direct test. We elucidated indicators of frequency-dependent perceptual attunement by comparing 5-8-month-old Dutch infants' discrimination of tokens containing a highly frequent [hɪt-he:t] and a highly infrequent [hÊt-hø:t] native vowel contrast as well as a non-native [hÉt-haet] vowel contrast in a behavioral visual habituation paradigm (Experiment 1). Infants discriminated both native contrasts similarly well, but did not discriminate the non-native contrast. We sought further evidence for subtle differences in the processing of the two native contrasts using near-infrared spectroscopy and a within-participant design (Experiment 2). The neuroimaging data did not provide additional evidence that responses to native contrasts are modulated by frequency of exposure. These results suggest that even large differences in exposure to a native contrast may not directly translate to behavioral and neural indicators of perceptual attunement, raising the possibility that frequency of exposure does not influence improvements in discriminating native contrasts.
Assuntos
Encéfalo/fisiologia , Discriminação Psicológica/fisiologia , Desenvolvimento da Linguagem , Percepção da Fala/fisiologia , Encéfalo/diagnóstico por imagem , Feminino , Neuroimagem Funcional , Humanos , Lactente , Masculino , Espectroscopia de Luz Próxima ao InfravermelhoRESUMO
The present study investigated the neural correlates of infant discrimination of very similar linguistic varieties (Quebecois and Parisian French) using functional Near InfraRed Spectroscopy. In line with previous behavioral and electrophysiological data, there was no evidence that 3-month-olds discriminated the two regional accents, whereas 5-month-olds did, with the locus of discrimination in left anterior perisylvian regions. These neuroimaging results suggest that a developing language network relying crucially on left perisylvian cortices sustains infants' discrimination of similar linguistic varieties within this early period of infancy.
Assuntos
Estimulação Acústica/métodos , Idioma , Percepção da Altura Sonora/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Percepção da Fala/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Eletrofisiologia , França , Humanos , Lactente , Comportamento do Lactente , Desenvolvimento da Linguagem , QuebequeRESUMO
We often express our thoughts through words, but thinking goes well beyond language. Here we focus on an elementary but basic thinking process, disjunction elimination, elicited by elementary visual scenes deprived of linguistic content, describing its neural and oculomotor correlates. We track two main components of a nonverbal deductive process: the construction of a logical representation (A or B), and its simplification by deduction (not A, therefore B). We identify the network active in the two phases and show that in the latter, but not in the former, it overlaps with areas known to respond to verbal logical reasoning. Oculomotor markers consistently differentiate logical processing induced by the construction of a representation, its simplification by deductive inference, and its maintenance when inferences cannot be drawn. Our results reveal how integrative logical processes incorporate novel experience in the flow of thoughts induced by visual scenes.
Assuntos
Encéfalo , Resolução de Problemas , Idioma , Lógica , Mapeamento EncefálicoRESUMO
By exploiting a multichannel portable instrument for time-domain near-infrared spectroscopy (TD-NIRS), we characterized healthy neonates' brains in term of optical properties and hemodynamic parameters. In particular, we assessed the absolute values of the absorption and reduced scattering coefficients at two wavelengths, together with oxy-, deoxy- and total hemoglobin concentrations, and the blood oxygen saturation of the neonates' brains. In this study, 33 healthy full-term neonates were tested, obtaining the following median values: 0.28 and [Formula: see text] for [Formula: see text] at 690 and 820 nm, respectively; 5.8 and [Formula: see text] for [Formula: see text] at 690 and 820 nm, respectively; [Formula: see text] for [Formula: see text]; [Formula: see text] for [Formula: see text]; [Formula: see text] for [Formula: see text]; 72% for [Formula: see text]. In general, the agreement of these values with the sparse existing literature appears not always consistent. These findings demonstrate the first measurements of optical properties of the healthy neonate brain using TD-NIRS and show the need for clarification of optical properties across methods and populations.
RESUMO
Each language has a unique set of phonemic categories and phonotactic rules which determine permissible sound sequences in that language. Behavioral research demonstrates that one's native language shapes the perception of both sound categories and sound sequences in adults, and neuroimaging results further indicate that the processing of native phonemes and phonotactics involves a left-dominant perisylvian brain network. Recent work using a novel technique, functional Near InfraRed Spectroscopy (NIRS), has suggested that a left-dominant network becomes evident toward the end of the first year of life as infants process phonemic contrasts. The present research project attempted to assess whether the same pattern would be seen for native phonotactics. We measured brain responses in Japanese- and French-learning infants to two contrasts: Abuna vs. Abna (a phonotactic contrast that is native in French, but not in Japanese) and Abuna vs. Abuuna (a vowel length contrast that is native in Japanese, but not in French). Results did not show a significant response to either contrast in either group, unlike both previous behavioral research on phonotactic processing and NIRS work on phonemic processing. To understand these null results, we performed similar NIRS experiments with Japanese adult participants. These data suggest that the infant null results arise from an interaction of multiple factors, involving the suitability of the experimental paradigm for NIRS measurements and stimulus perceptibility. We discuss the challenges facing this novel technique, particularly focusing on the optimal stimulus presentation which could yield strong enough hemodynamic responses when using the change detection paradigm.
RESUMO
Until recently, imaging the infant brain was very challenging. Functional Near InfraRed Spectroscopy (fNIRS) is a promising, relatively novel technique, whose use is rapidly expanding. As an emergent field, it is particularly important to share methodological knowledge to ensure replicable and robust results. In this paper, we present a community-augmented database which will facilitate precisely this exchange. We tabulated articles and theses reporting empirical fNIRS research carried out on infants below three years of age along several methodological variables. The resulting spreadsheet has been uploaded in a format allowing individuals to continue adding new results, and download the most recent version of the table. Thus, this database is ideal to carry out systematic reviews. We illustrate its academic utility by focusing on the factors affecting three key variables: infant attrition, the reliability of oxygenated and deoxygenated responses, and signal-to-noise ratios. We then discuss strengths and weaknesses of the DBIfNIRS, and conclude by suggesting a set of simple guidelines aimed to facilitate methodological convergence through the standardization of reports.