Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Regul Toxicol Pharmacol ; 96: 30-40, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29684431

RESUMO

The utility of rodent forestomach tumor data for hazard and risk assessment has been examined for decades because humans do not have a forestomach, and these tumors occur by varying modes of action (MOAs). We have used the MOA for ethyl acrylate (EA) to develop an Adverse Outcome Pathway (AOP) for forestomach tumors caused by non-genotoxic initiating events. These tumors occur secondary to site of contact induced epithelial cytotoxicity and regenerative repair-driven proliferation. For EA, the critical initiating event (IE) is epithelial cytotoxicity, and supporting key events (KEs) at the cellular and tissue level are increased cell proliferation (KE1) resulting in sustained hyperplasia (KE2), with the adverse outcome of forestomach papillomas and carcinomas. For EA, a pre-molecular initiating event (pre-MIE) of sustained glutathione depletion is probable. Supporting data from butylated hydroxyanisole (BHA) are also reviewed. Although there may be some variability in the pre-MIEs and IEs for BHA and EA, they share the same KEs, and evidence for BHA confers support for the AOP. Evolved Bradford Hill considerations of biological plausibility, essentiality, and empirical support were evaluated per OECD guidance. Although an MIE is not specifically described, overall confidence in the AOP is high due to well-developed and accepted evidence streams, and the AOP can be used for regulatory applications including hazard identification and risk assessment for chemicals that act by this AOP.


Assuntos
Acrilatos/efeitos adversos , Rotas de Resultados Adversos , Neoplasias Gástricas/induzido quimicamente , Acrilatos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Medição de Risco , Neoplasias Gástricas/patologia
2.
Regul Toxicol Pharmacol ; 96: 178-189, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29738809

RESUMO

Chronic repeated gavage dosing of high concentrations of ethyl acrylate (EA) causes forestomach tumors in rats and mice. For two decades, there has been general consensus that these tumors are unique to rodents because of: i) lack of carcinogenicity in other organs, ii) specificity to the forestomach (an organ unique to rodents which humans do not possess), iii) lack of carcinogenicity by other routes of exposure, and iv) obvious site of contact toxicity at carcinogenic doses. In 1986, EA was classified as possibly carcinogenic to humans by the International Agency for Research on Cancer (IARC). However, by applying a MOA analyses and human relevance framework assessment, the weight-of-evidence supports a cytotoxic MOA with the following key events: i) bolus delivery of EA to forestomach lumen and subsequent absorption, ii) cytotoxicity likely due to saturation of enzymatic detoxification, iii) chronic regenerative hyperplasia, and iv) spontaneous mutation due to increased cell replication and cell population. Clonal expansion of initiated cells thus results in late onset tumorigenesis. The key events in this 'wound and healing' MOA provide high confidence in the MOA as assessed by evolved Bradford-Hill Criteria. The weight-of-evidence supported by the proposed MOA, combined with a unique tissue that does not exist in humans, indicates that EA is highly unlikely to pose a human cancer hazard.


Assuntos
Acrilatos/administração & dosagem , Acrilatos/toxicidade , Neoplasias Gástricas/induzido quimicamente , Acrilatos/química , Administração Oral , Animais , Humanos , Estrutura Molecular , Ratos
3.
Data Brief ; 20: 316-325, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167439

RESUMO

Available point mutation tests have shown inconsistent results with various acrylates. Most of those tests were performed prior to OECD guidelines and appropriate data regarding cytotoxicity are not given. Data from three current OECD guideline compliant experiments conducted under GLP are provided. They include (a) an in vitro mouse lymphoma (TK+/-) assay (OECD 490) [3], (b) an in vitro HPRT locus gene mutation assay utilizing cultures of Chinese hamster V79 cells (OECD 476) [1], and (c) an in vitro micronucleus test in human lymphocytes (OECD 487) [2]. Test materials were not mutagenic under these experimental conditions, adding to the weight-of-evidence of non-genotoxicity for this group of chemicals.

4.
Toxicol Lett ; 294: 205-211, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29775721

RESUMO

Skin tumors have been observed in C3H/HeJ mice following treatment with high and strongly irritating concentrations of 2-ethylhexyl acrylate (2-EHA). Dermal carcinogenicity studies performed with 2-EHA are reviewed, contrasting the results in two mouse strains (C3H/HeJ and NMRI) under different dosing regimens. Application of contemporary evaluation criteria to the existing dermal carcinogenicity dataset demonstrates that 2-EHA induces skin tumors only at concentrations exceeding an maximum tolerated dose (MTD) and in the immune-dysregulated C3H/HeJ mouse model. Overall, the available chronic toxicity and genotoxicity data on 2-EHA support a non-genotoxic chemical irritant mechanism, whereby chronic irritation leads to inflammation, tissue injury, and wound repair, the latter of which is disrupted in C3H/HeJ mice and leads to tumor formation. Tumor response information in excess of an MTD should not be considered in a human hazard or risk assessment paradigm. For the purposes of an appropriate hazard assessment, 2-EHA did not cause or initiate dermal carcinogenesis in an immune competent (NMRI) mouse model, and, even in the immune compromised C3H/HeJ model, did not induce skin tumors at doses which did not exceed the MTD.


Assuntos
Acrilatos/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Carcinogênese/efeitos dos fármacos , Neoplasias Cutâneas/induzido quimicamente , Pele/efeitos dos fármacos , Acrilatos/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Guias como Assunto , Humanos , Hospedeiro Imunocomprometido/efeitos dos fármacos , Dose Máxima Tolerável , Testes de Mutagenicidade/normas , Testes de Mutagenicidade/tendências , Reprodutibilidade dos Testes , Medição de Risco , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Especificidade da Espécie , Testes de Toxicidade Aguda/normas , Testes de Toxicidade Aguda/tendências , Testes de Toxicidade Crônica/normas , Testes de Toxicidade Crônica/tendências
5.
Toxicology ; 402-403: 50-67, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29689363

RESUMO

Lower alkyl acrylate monomers include methyl-, ethyl-, n-butyl-, and 2-ethylhexyl acrylate. These acrylates are used in the manufacture of acrylic polymers and copolymers for plastics, food packaging, adhesives, and cosmetic formulations. Although there is limited potential for human environmental exposure, occupational exposure can occur via inhalation and dermal contact. Recently, new genotoxicity data have been generated, along with in silico and in vitro read-cross analyses, for these acrylates. The availability of high-throughput screening (HTS) data through the ToxCast™/Tox21 databases allows for consideration of computational toxicology and organization of these data according to the ten key characteristics of carcinogens. Therefore, we conducted a comprehensive review to evaluate the mechanistic, toxicokinetic, animal, and human data, including HTS data, for characterizing the potential carcinogenicity, mutagenicity, and genotoxicity of these acrylates. Toxicokinetic data demonstrate that these acrylates are metabolized rapidly by carboxylesterase hydrolysis and conjugation with glutathione. HTS data demonstrated an overall lack of bioactivity in cancer-related pathways. Overall, the genotoxicity and mutagenicity data support a cytotoxic, non-genotoxic mechanism for these acrylates. Cancer bioassay studies conducted by the oral, dermal, and inhalation routes in animal models with these acrylates did not show any increase in tumor incidence, with two exceptions. At high doses, and secondary to chronic site-of-contact irritation and corrosion, rodent forestomach tumors were induced by oral gavage dosing with ethyl acrylate, and skin tumors were observed following chronic dermal dosing with 2-ethylhexyl acrylate in C3H/HeJ inbred mice (a strain with deficiencies in wound healing), but not in the outbred NMRI strain. For both dermal and forestomach cancers, tumorigenesis is secondary to high doses and long-term tissue damage, shown to be reversible. With evidence that these chemicals are not genotoxic, and that they cause forestomach and dermal tumors through chronic irritation and regenerative proliferation mechanisms, these acrylates are unlikely to pose a human cancer hazard.


Assuntos
Acrilatos/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Exposição Ocupacional/análise , Acrilatos/efeitos adversos , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Dano ao DNA/fisiologia , Humanos , Mutagênicos/efeitos adversos , Exposição Ocupacional/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Toxicol Appl Pharmacol ; 183(1): 23-40, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12217639

RESUMO

Numerous inhalation studies have demonstrated that exposure to high concentrations of a wide range of volatile acids and esters results in cytotoxicity to the nasal olfactory epithelium. Previously, a hybrid computational fluid dynamics (CFD) and physiologically based pharmacokinetic (PBPK) dosimetry model was constructed to estimate the regional tissue dose of organic acids in the rodent and human nasal cavity. This study extends this methodology to a representative volatile organic ester, ethyl acrylate (EA). An in vitro exposure of explants of rat olfactory epithelium to EA with and without an esterase inhibitor demonstrated that the organic acid, acrylic acid, released by nasal esterases is primarily responsible for the olfactory cytotoxicity. Estimates of the steady-state concentration of acrylic acid in olfactory tissue were made for the rat nasal cavity by using data from a series of short-term in vivo studies and from the results of CFD-PBPK computer modeling. Appropriate parameterization of the CFD-PBPK model for the human nasal cavity and to accommodate human systemic anatomy, metabolism, and physiology allowed interspecies dose comparisons. The CFD-PBPK model simulations indicate that the olfactory epithelium of the human nasal cavity is exposed to at least 18-fold lower tissue concentrations of acid released from EA than the olfactory epithelium of the rat nasal cavity under the same exposure conditions. The magnitude of this difference varies with the specific exposure scenario that is simulated and with the specific dataset of human esterase activity used for the simulations. The increased olfactory tissue dose in rats relative to humans may be attributed to both the vulnerable location of the rodent olfactory tissue (comprising greater than 50% of the nasal cavity) and the high concentration of rat olfactory esterase activity (comparable to liver esterase activity) relative to human olfactory tissue. These studies suggest that the human olfactory epithelium is protected from vapors of organic esters significantly better than rat olfactory epithelium due to substantive differences in nasal anatomy, nasal and systemic metabolism, systemic physiology, and air flow. Although the accumulation of acrylic acid in the nasal tissues may be a primary concern for nasal irritation and human risk assessment, acute animal inhalation studies to evaluate lethality (LD50-type studies) conducted at very high vapor concentrations of ethyl acrylate indicated that a different mechanism is primarily responsible for mortality. The rodent studies demonstrated that systemic tissue nonprotein sulfhydryl depletion is a primary cause of death at exposure concentrations more than two orders of magnitude above the concentrations that induce nasal irritation. The CFD-PBPK model adequately simulated the severe depletion of glutathione in systemic tissues (e.g., liver and lung) associated with acute inhalation exposures in the 500-1000 ppm range. These results indicate that the CFD-PBPK model can simulate both the low-dose nasal tissue dosimetry associated with irritation and the high-dose systemic tissue dosimetry associated with mortality. In addition, the comparison of simulation results for ethyl acetate and acetone to nasal deposition data suggests that the CFD-PBPK model has general utility as a tool for dosimetry estimates for a wide range of other esters and slowly metabolized vapors.


Assuntos
Acrilatos/toxicidade , Carcinógenos/toxicidade , Mucosa Olfatória/fisiologia , Acrilatos/farmacocinética , Administração por Inalação , Animais , Carcinógenos/farmacocinética , Simulação por Computador , Esterases/metabolismo , Feminino , Humanos , Macaca fascicularis , Masculino , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/patologia , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA