Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452850

RESUMO

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína SOS1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem da Célula , Endoderma/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(52): e2313200120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113263

RESUMO

In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2- to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Feminino , Camundongos , Embrião de Mamíferos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
3.
Mol Cell ; 54(6): 1034-1041, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24910098

RESUMO

Cell signaling depends on dynamic protein-protein interaction (PPI) networks, often assembled through modular domains each interacting with multiple peptide motifs. This complexity raises a conceptual challenge, namely to define whether a particular cellular response requires assembly of the complete PPI network of interest or can be driven by a specific interaction. To address this issue, we designed variants of the Grb2 SH2 domain ("pY-clamps") whose specificity is highly biased toward a single phosphotyrosine (pY) motif among many potential pYXNX Grb2-binding sites. Surprisingly, directing Grb2 predominantly to a single pY site of the Ptpn11/Shp2 phosphatase, but not other sites tested, was sufficient for differentiation of the essential primitive endoderm lineage from embryonic stem cells. Our data suggest that discrete connections within complex PPI networks can underpin regulation of particular biological events. We propose that this directed wiring approach will be of general utility in functionally annotating specific PPIs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Proteína Adaptadora GRB2/metabolismo , Mapas de Interação de Proteínas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Linhagem Celular , Cristalografia por Raios X , Células-Tronco Embrionárias/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Proteína Adaptadora GRB2/genética , Camundongos , Modelos Moleculares , Ligação Proteica/genética , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/ultraestrutura , Transdução de Sinais/genética
4.
Biochem J ; 478(23): 4119-4136, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34780645

RESUMO

The ERK5 MAP kinase signalling pathway drives transcription of naïve pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5 signalling and ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern 2C gene transcription and a key mESC rejuvenation process.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
5.
EMBO Rep ; 18(7): 1108-1122, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28588073

RESUMO

Pluripotent stem cells (PSCs) hold great clinical potential, as they possess the capacity to differentiate into fully specialised tissues such as pancreas, liver, neurons and cardiac muscle. However, the molecular mechanisms that coordinate pluripotent exit with lineage specification remain poorly understood. To address this question, we perform a small molecule screen to systematically identify novel regulators of the Smad2 signalling network, a key determinant of PSC fate. We reveal an essential function for BET family bromodomain proteins in Smad2 activation, distinct from the role of Brd4 in pluripotency maintenance. Mechanistically, BET proteins specifically engage Nodal gene regulatory elements (NREs) to promote Nodal signalling and Smad2 developmental responses. In pluripotent cells, Brd2-Brd4 occupy NREs, but only Brd4 is required for pluripotency gene expression. Brd4 downregulation facilitates pluripotent exit and drives enhanced Brd2 NRE occupancy, thereby unveiling a specific function for Brd2 in differentiative Nodal-Smad2 signalling. Therefore, distinct BET functionalities and Brd4-Brd2 isoform switching at NREs coordinate pluripotent exit with lineage specification.


Assuntos
Diferenciação Celular , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Smad2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem da Célula , Humanos , Camundongos , Proteínas/metabolismo , Transdução de Sinais
6.
Analyst ; 144(21): 6371-6381, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31566633

RESUMO

MALDI TOF mass spectrometry (MS) is widely used to characterise and biotype bacterial samples, but a complementary method for profiling of mammalian cells is still underdeveloped. Current approaches vary dramatically in their sample preparation methods and are not suitable for high-throughput studies. In this work, we present a universal workflow for mammalian cell MALDI TOF MS analysis and apply it to distinguish ground-state naïve and differentiating mouse embryonic stem cells (mESCs), which can be used as a model for drug discovery. We employed a systematic approach testing many parameters to evaluate how efficiently and reproducibly each method extracted unique mass features from four different human cell lines. These data enabled us to develop a unique mammalian cell MALDI TOF workflow involving a freeze-thaw cycle, methanol fixing and a CHCA matrix to generate spectra that robustly phenotype different cell lines and are highly reproducible in peak identification across replicate spectra. We applied our optimised workflow to distinguish naïve and differentiating populations using multivariate analysis and reproducibly identify unique features. We were also able to demonstrate the compatibility of our optimised method for current automated liquid handling technologies. Consequently, our MALDI TOF MS profiling method enables identification of unique features and robust phenotyping of mESC differentiation in under 1 hour from culture to analysis, which is significantly faster and cheaper when compared with conventional methods such as qPCR. This method has the potential to be automated and can in the future be applied to profile other cell types and expanded towards cellular MALDI TOF MS screening assays.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fluxo de Trabalho , Animais , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Células HEK293 , Humanos , Camundongos , Análise Multivariada , Análise de Componente Principal , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Manejo de Espécimes
7.
Mol Cell ; 37(5): 633-42, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20227368

RESUMO

The mammalian target of rapamycin (mTOR) pathway is activated by a variety of stimuli, including nutrients such as glucose and amino acids. The Ste20 family kinase MAP4K3 is regulated by amino acids and acts upstream of mTORC1. Here we investigate how MAP4K3 activity is regulated by amino acid sufficiency. We identify a transautophosphorylation site in the MAP4K3 kinase activation segment (Ser170) that is required for MAP4K3 activity and its activation of mTORC1 signaling. Following amino acid withdrawal, Ser170 is dephosphorylated via PP2A complexed to PR61 epsilon, a PP2A-targeting subunit. Inhibition of PR61 epsilon expression prevents MAP4K3 Ser170 dephosphorylation and impairs mTORC1 inhibition during amino acid withdrawal. We propose that during amino acid sufficiency Ser170-phosphorylated MAP4K3 activates mTORC1, but that upon amino acid restriction MAP4K3 preferentially interacts with PP2A(T61 epsilon), promoting dephosphorylation of Ser170, MAP4K3 inhibition, and, subsequently, inhibition of mTORC1 signaling.


Assuntos
Aminoácidos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos/deficiência , Linhagem Celular , Ativação Enzimática , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas , Proteínas/metabolismo , Interferência de RNA , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR , Transfecção
8.
Nat Methods ; 11(1): 47-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270602

RESUMO

Lipids have a role in virtually all biological processes, acting as structural elements, scaffolds and signaling molecules, but they are still largely under-represented in known biological networks. Here we describe a liposome microarray-based assay (LiMA), a method that measures protein recruitment to membranes in a quantitative, automated, multiplexed and high-throughput manner.


Assuntos
Lipídeos/química , Lipossomos/química , Análise em Microsséries , Automação , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Mutação , Ligação Proteica , Proteínas/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Sefarose/química , Transdução de Sinais , Biologia de Sistemas
9.
Elife ; 132024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869055

RESUMO

The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.


Assuntos
Proteína Quinase CDC2 , Polaridade Celular , Proteínas de Drosophila , Animais , Fosforilação , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Órgãos dos Sentidos/metabolismo , Órgãos dos Sentidos/embriologia , Peptídeos e Proteínas de Sinalização Intracelular
10.
Life Sci Alliance ; 7(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199845

RESUMO

Protein ubiquitylation regulates key biological processes including transcription. This is exemplified by the E3 ubiquitin ligase RNF12/RLIM, which controls developmental gene expression by ubiquitylating the REX1 transcription factor and is mutated in an X-linked intellectual disability disorder. However, the precise mechanisms by which ubiquitylation drives specific transcriptional responses are not known. Here, we show that RNF12 is recruited to specific genomic locations via a consensus sequence motif, which enables co-localisation with REX1 substrate at gene promoters. Surprisingly, RNF12 chromatin recruitment is achieved via a non-catalytic basic region and comprises a previously unappreciated N-terminal autoinhibitory mechanism. Furthermore, RNF12 chromatin targeting is critical for REX1 ubiquitylation and downstream RNF12-dependent gene regulation. Our results demonstrate a key role for chromatin in regulation of the RNF12-REX1 axis and provide insight into mechanisms by which protein ubiquitylation enables programming of gene expression.


Assuntos
Cromatina , Deficiência Intelectual , Humanos , Cromatina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Genômica
11.
FEBS J ; 290(6): 1454-1460, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35212144

RESUMO

Intellectual disability (ID) represents a major burden on healthcare systems in the developed world. However, there is a disconnect between our knowledge of genes that are mutated in ID and our understanding of the underpinning molecular mechanisms that cause these disorders. We argue that elucidating the signalling and transcriptional networks that are dysregulated in patients will afford new therapeutic opportunities.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Transdução de Sinais
12.
FEBS Lett ; 597(19): 2375-2415, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37607329

RESUMO

Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.


Assuntos
Quinases Dyrk , Deficiência Intelectual , Proteínas Serina-Treonina Quinases , Criança , Humanos , Deficiências do Desenvolvimento , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Células-Tronco/metabolismo
13.
Sci Signal ; 15(742): eabm5995, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857630

RESUMO

The E3 ubiquitin ligase RNF12 plays essential roles during development, and the gene encoding it, RLIM, is mutated in the X-linked human developmental disorder Tonne-Kalscheuer syndrome (TOKAS). Substrates of RNF12 include transcriptional regulators such as the pluripotency-associated transcriptional repressor REX1. Using global quantitative proteomics in male mouse embryonic stem cells, we identified the deubiquitylase USP26 as a putative downstream target of RNF12 activity. RNF12 relieved REX1-mediated repression of Usp26, leading to an increase in USP26 abundance and the formation of RNF12-USP26 complexes. Interaction with USP26 prevented RNF12 autoubiquitylation and proteasomal degradation, thereby establishing a transcriptional feed-forward loop that amplified RNF12-dependent derepression of REX1 targets. We showed that the RNF12-USP26 axis operated specifically in mouse testes and was required for the expression of gametogenesis genes and for germ cell differentiation in vitro. Furthermore, this RNF12-USP26 axis was disrupted by RLIM and USP26 variants found in TOKAS and infertility patients, respectively. This work reveals synergy within the ubiquitylation cycle that controls a key developmental process in gametogenesis and that is disrupted in human genetic disorders.


Assuntos
Fatores de Transcrição , Ubiquitina-Proteína Ligases , Animais , Cisteína Endopeptidases/genética , Células Germinativas/metabolismo , Humanos , Masculino , Camundongos , Mutação , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764390

RESUMO

Ubiquitylation enzymes are involved in all aspects of eukaryotic biology and are frequently disrupted in disease. One example is the E3 ubiquitin ligase RNF12/RLIM, which is mutated in the developmental disorder Tønne-Kalscheuer syndrome (TOKAS). RNF12 TOKAS variants largely disrupt catalytic E3 ubiquitin ligase activity, which presents a pressing need to develop approaches to assess the impact of variants on RNF12 activity in patients. Here, we use photocrosslinking activity-based probes (photoABPs) to monitor RNF12 RING E3 ubiquitin ligase activity in normal and pathogenic contexts. We demonstrate that photoABPs undergo UV-induced labelling of RNF12 that is consistent with its RING E3 ligase activity. Furthermore, photoABPs robustly report the impact of RNF12 TOKAS variants on E3 activity, including variants within the RING domain and distal non-RING regulatory elements. Finally, we show that this technology can be rapidly deployed in human pluripotent stem cells. In summary, photoABPs are versatile tools that can directly identify disruptions to RING E3 ubiquitin ligase activity in human disease, thereby providing new insight into pathogenic mechanisms.


Assuntos
Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Front Cell Dev Biol ; 9: 659951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966732

RESUMO

Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.

16.
FEBS Lett ; 595(1): 14-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107035

RESUMO

The self-renewal efficiency of mouse embryonic stem cells (ESCs) is determined by the concentration of the transcription factor NANOG. While NANOG binds thousands of sites in chromatin, the regulatory systems that control DNA binding are poorly characterised. Here, we show that NANOG is phosphorylated by casein kinase I, and identify target residues. Phosphomimetic substitutions at phosphorylation sites within the homeodomain (S130 and S131) have site-specific functional effects. Phosphomimetic substitution of S130 abolishes DNA binding by NANOG and eliminates LIF-independent self-renewal. In contrast, phosphomimetic substitution of S131 enhances LIF-independent self-renewal, without influencing DNA binding. Modelling the DNA-homeodomain complex explains the disparate effects of these phosphomimetic substitutions. These results indicate how phosphorylation may influence NANOG homeodomain interactions that underpin ESC self-renewal.


Assuntos
Caseína Quinase I/metabolismo , Autorrenovação Celular , Células-Tronco Embrionárias Murinas/citologia , Proteína Homeobox Nanog/metabolismo , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Camundongos , Proteína Homeobox Nanog/química , Proteína Homeobox Nanog/genética , Fosforilação
17.
Sci Rep ; 11(1): 9560, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953269

RESUMO

Tonne-Kalscheuer syndrome (TOKAS) is an X-linked intellectual disability syndrome associated with variable clinical features including craniofacial abnormalities, hypogenitalism and diaphragmatic hernia. TOKAS is caused exclusively by variants in the gene encoding the E3 ubiquitin ligase gene RLIM, also known as RNF12. Here we report identification of a novel RLIM missense variant, c.1262A>G p.(Tyr421Cys) adjacent to the regulatory basic region, which causes a severe form of TOKAS resulting in perinatal lethality by diaphragmatic hernia. Inheritance and X-chromosome inactivation patterns implicate RLIM p.(Tyr421Cys) as the likely pathogenic variant in the affected individual and within the kindred. We show that the RLIM p.(Tyr421Cys) variant disrupts both expression and function of the protein in an embryonic stem cell model. RLIM p.(Tyr421Cys) is correctly localised to the nucleus, but is readily degraded by the proteasome. The RLIM p.(Tyr421Cys) variant also displays significantly impaired E3 ubiquitin ligase activity, which interferes with RLIM function in Xist long-non-coding RNA induction that initiates imprinted X-chromosome inactivation. Our data uncover a highly disruptive missense variant in RLIM that causes a severe form of TOKAS, thereby expanding our understanding of the molecular and phenotypic spectrum of disease severity.


Assuntos
Anormalidades Craniofaciais , Hérnia Diafragmática , Hipogonadismo , Deficiência Intelectual , Mutação de Sentido Incorreto , Ubiquitina-Proteína Ligases , Humanos , Recém-Nascido , Masculino , Anormalidades Craniofaciais/genética , Hérnia Diafragmática/genética , Hipogonadismo/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
18.
Trends Biochem Sci ; 30(1): 35-42, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15653324

RESUMO

The lipid kinase phosphoinositide 3-kinase (PI3K) is activated in response to various extracellular signals including peptide growth factors such as insulin and insulin-like growth factors (IGFs). Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] generated by PI3K is central to the diverse responses elicited by insulin, including glucose homeostasis, proliferation, survival and cell growth. The actions of lipid phosphatases have been considered to be the main means of attenuating PI3K signalling, whereby the principal 3-phosphatase - phosphatase and tensin homologue deleted on chromosome 10 (PTEN) - dephosphorylates PtdIns(3,4,5)P(3), reversing the action of PI3K. Recently, however, another pathway of regulation of PI3K has been identified in which activation of PI3K itself is prevented. This finding, together with earlier work, strongly suggests that a major form of negative feedback inhibition of PI3K results from activated growth signalling via mammalian target of rapamycin (mTOR) and the p70 S6 kinase (S6K) - a pathway that could have consequences for the development of type 2 diabetes and tuberous sclerosis complex.


Assuntos
Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Humanos , Insulina/fisiologia , PTEN Fosfo-Hidrolase , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/genética , Somatomedinas/fisiologia , Serina-Treonina Quinases TOR , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Nat Commun ; 11(1): 1357, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170114

RESUMO

Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling. Upon ESC differentiation, FGF4 utilises a bimodal strategy to disable EPHA2, which is accompanied by transcriptional induction of EFN ligands. Mechanistically, FGF4-ERK1/2-RSK signalling inhibits EPHA2 via Ser/Thr phosphorylation, whilst FGF4-ERK1/2 disrupts a core pluripotency transcriptional circuit required for Epha2 gene expression. This system also operates in mouse and human embryos, where EPHA receptors are enriched in pluripotent cells whilst surrounding lineage-specified trophectoderm expresses EFNA ligands. Our data provide insight into function and regulation of EPH-EFN signalling in ESCs, and suggest that segregated EPH-EFN expression coordinates cell fate with compartmentalisation during early embryonic development.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteômica/métodos , Receptor EphA2/metabolismo , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Efrina-A2 , Fator 4 de Crescimento de Fibroblastos/metabolismo , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Receptor EphA2/genética , Transdução de Sinais
20.
Dev Cell ; 55(5): 629-647.e7, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33080171

RESUMO

Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.


Assuntos
Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/metabolismo , Mutação/genética , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteólise , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA