Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neural Transm (Vienna) ; 121(8): 861-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24557498

RESUMO

Glutamate plays a complex role in many aspects of Parkinson's disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, L-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson's disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and L-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against L-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson's disease and L-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson's disease.


Assuntos
Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Receptores de Glutamato/metabolismo , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Discinesia Induzida por Medicamentos/fisiopatologia , Discinesia Induzida por Medicamentos/prevenção & controle , Humanos
2.
J Parkinsons Dis ; 14(2): 245-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427500

RESUMO

Background: Increased activity across corticostriatal glutamatergic synapses may contribute to L-DOPA-induced dyskinesia in Parkinson's disease. Given the weak efficacy and side-effect profile of amantadine, alternative strategies to reduce glutamate transmission are being investigated. Metabotropic glutamate receptor 4 (mGlu4) is a promising target since its activation would reduce glutamate release. Objective: We hypothesized that two mGlu4 positive allosteric modulators, Lu AF21934 ((1 S,2 R)-N1-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide) and ADX88178 (5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine), would provide relief in rat and primate models of L-DOPA-induced dyskinesia. Methods: The ability of Lu AF21934 or ADX88178 to reverse pre-established dyskinesia was examined in L-DOPA-primed 6-hydroxydopamine-lesioned rats expressing abnormal involuntary movements (AIMs) or in 1-methyl-4-phenyl,1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets expressing L-DOPA-induced dyskinesia. Additionally, the ability of Lu AF21934 to prevent the development of de novo L-DOPA-induced AIMs was explored in the 6-hydroxydopamine-lesioned rats. Results: Neither Lu AF21934 (10 or 30 mg/kg p.o.) nor ADX88178 (10 or 30 mg/kg p.o.) reduced pre-established AIMs in 6-hydroxydopamine-lesioned rats. Similarly, in L-DOPA-primed common marmosets, no reduction in established dyskinesia was observed with Lu AF21934 (3 or 10 mg/kg p.o.). Conversely, amantadine significantly reduced (>40%) the expression of dyskinesia in both models. Lu AF21934 also failed to suppress the development of AIMs in 6-hydroxydopamine-lesioned rats. Conclusions: This study found no benefit of mGlu4 positive allosteric modulators in tackling L-DOPA-induced dyskinesia. These findings are concordant with the recent failure of foliglurax in phase II clinical trials supporting the predictive validity of these pre-clinical dyskinesia models, while raising further doubt on the anti-dyskinetic potential of mGlu4 positive allosteric modulators.


Assuntos
Anilidas , Ácidos Cicloexanocarboxílicos , Discinesia Induzida por Medicamentos , Doença de Parkinson , Pirimidinas , Receptores de Glutamato Metabotrópico , Tiazóis , Ratos , Animais , Levodopa/uso terapêutico , Callithrix , Doença de Parkinson/tratamento farmacológico , Oxidopamina , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/metabolismo , Antiparkinsonianos/uso terapêutico , Amantadina/farmacologia , Amantadina/uso terapêutico , Glutamatos/uso terapêutico , Modelos Animais de Doenças
3.
Mamm Genome ; 21(9-10): 499-508, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20878524

RESUMO

Insulin resistance and altered endocrine pancreas function are central pathophysiological features of type 2 diabetes mellitus (T2DM). The Goto-Kakizaki (GK) rat is a model of spontaneous T2DM characterised by reduced beta cell mass and genetically determined glucose intolerance and altered insulin secretion. To identify genetic determinants of endocrine pancreas histopathology, we carried out quantitative trait locus (QTL) mapping of histological phenotypes (beta cell mass -BCM and insulin-positive cell area -IPCA) and plasma concentration of hormones and growth factors in a F2 cohort derived from GK and normoglycemic Brown Norway rats. Although IPCA and BCM in the duodenal region of the pancreas were highly positively correlated (P < 10(-6)), and similarly in the splenic region, both measures were poorly correlated when comparing duodenal and splenic phenotypes. Strongest evidence of linkage to pancreas morphological traits was obtained between BCM and chromosome 10 (LOD 3.2). Evidence of significant linkage (LOD 4.2) to plasma corticosterone was detected in a region of chromosome 1 distal to other QTLs previously identified in the GK. Male-specific genetic effects were detected, including linkages (LOD > 4) to growth hormome (GH) on chromosome 6 and prolactin on chromosome 17. These data suggest independent genetic control of the structure and function of ontologically different regions of the endocrine pancreas. Novel QTLs for corticosterone, prolactin and GH may contribute to diabetes in the GK. The QTLs that we have identified in this, and previous genetic studies collectively underline the complex and multiple mechanisms involved in diabetes in the GK strain.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Locos de Características Quantitativas , Animais , Glicemia , Mapeamento Cromossômico , Corticosterona/sangue , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Ligação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Hormônio do Crescimento/sangue , Hormônio do Crescimento/genética , Insulina/sangue , Insulina/genética , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Masculino , Pâncreas/patologia , Fenótipo , Prolactina/sangue , Prolactina/genética , Ratos , Ratos Endogâmicos BN
4.
Front Neurosci ; 14: 567222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041762

RESUMO

Dyskinesia associated with chronic levodopa treatment in Parkinson's disease is associated with maladaptive striatal plasticity. The objective of this study was to examine whether macroscale structural changes, as captured by magnetic resonance imaging (MRI) accompany this plasticity and to identify plausible cellular contributors in a rodent model of levodopa-induced dyskinesia. Adult male Sprague-Dawley rats were rendered hemi-parkinsonian by stereotaxic injection of 6-hydroxydopamine into the left medial forebrain bundle prior to chronic treatment with saline (control) or levodopa to induce abnormal involuntary movements (AIMs), reflective of dyskinesia. Perfusion-fixed brains underwent ex vivo structural MRI before sectioning and staining for cellular markers. Chronic treatment with levodopa induced significant AIMs (p < 0.0001 versus saline). The absolute volume of the ipsilateral, lesioned striatum was increased in levodopa-treated rats resulting in a significant difference in percentage volume change when compared to saline-treated rats (p < 0.01). Moreover, a significant positive correlation was found between this volume change and AIMs scores for individual levodopa-treated rats (r = 0.96; p < 0.01). The density of Iba1+ cells was increased within the lesioned versus intact striatum (p < 0.01) with no difference between treatment groups. Conversely, Iba1+ microglia soma size was significantly increased (p < 0.01) in the lesioned striatum of levodopa-treated but not saline-treated rats. Soma size was not, however, significantly correlated with either AIMs or MRI volume change. Although GFAP+ astrocytes were elevated in the lesioned versus intact striatum (p < 0.001), there was no difference between treatment groups. No statistically significant effects of either lesion or treatment on RECA1, a marker for blood vessels, were observed. Collectively, these data suggest chronic levodopa treatment in 6-hydroxydopamine lesioned rats is associated with increased striatal volume that correlates with the development of AIMs. The accompanying increase in number and size of microglia, however, cannot alone explain this volume expansion. Further multi-modal studies are warranted to establish the brain-wide effects of chronic levodopa treatment.

5.
Eur J Neurosci ; 27(5): 1086-96, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18312582

RESUMO

Parkinsonian neurodegeneration is associated with heightened levels of oxidative stress and the activation of apoptotic pathways. In an in vitro cellular model, we reported that 6-hydroxydopamine (6-OHDA) induces apoptotic cell death via the induction of mitochondrial dysfunction, the activation of caspase 3 and the consequent proteolytic activation of the redox-sensitive kinase, protein kinase C (PKC)delta, in PC12 cells. Here we have investigated the involvement of PKCdelta in 6-OHDA-induced cell death in vivo. The nigrostriatal pathway of rats was lesioned by unilateral infusion of 6-OHDA into either the striatum or substantia nigra pars compacta (SNpc). Infusion into the SNpc resulted in rapid loss of tyrosine hydroxylase (TH)-positive cells (87% decrease after 4 days), consistent with a necrotic-like mode of cell death. In contrast, striatal infusion initiated a slower, progressive decline in TH immunoreactivity (25% decrease in the SNpc after 4 days); cell appearance was characteristic of apoptosis. This is consistent with a transient increase in active caspase 3 immunoreactivity at 4 days post-infusion, and a concomitant proteolytic activation of PKCdelta in the SNpc of striatal-lesioned rats. Cleavage of PKCdelta did not occur in the striatum or cerebellum of lesioned animals, or in the SNpc of sham-operated controls. No increase in caspase 3 immunoreactivity or proteolytic activation of PKCdelta was detected in nigral-lesioned rats. These results suggest that after 6-OHDA infusion into the striatum, retrograde neurotoxicity induces caspase 3-dependent PKCdelta proteolytic activation in the cell bodies of the SNpc, implicating this kinase in the neurodegenerative process.


Assuntos
Corpo Estriado/enzimologia , Oxidopamina/toxicidade , Proteína Quinase C-delta/metabolismo , Substância Negra/enzimologia , Animais , Corpo Estriado/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Masculino , Proteína Quinase C-delta/genética , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos
6.
Int J Cardiol ; 229: 125-131, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28340978

RESUMO

BACKGROUND: Founded in 1992, the International Society for Adult Congenital Heart Disease (ISACHD) is the leading global organization of professionals dedicated to pursuing excellence in the care of adults with congenital heart disease (CHD) worldwide. Among ISACHD's objectives is to "promote a holistic team-based approach to the care of the adult with CHD that is comprehensive, patient-centered, and interdisciplinary" (http://www.isachd.org). This emphasis on team-based care reflects the fact that adults with CHD constitute a heterogeneous population with a wide spectrum of disease complexity, frequent association with other organ involvement, and varied co-morbidities and psychosocial issues. METHODS: Recognizing the vital role of the adult CHD (ACHD) nurse coordinator (ACHD-NC) in optimizing team-based care, ISACHD established a task force to elucidate and provide guidance on the roles and responsibilities of the ACHD-NC. Acknowledging that nursing roles can vary widely from region to region based on factors such as credentials, scopes of practice, regulations, and local culture and tradition, an international panel was assembled with experts from North America, Europe, East Asia, and Oceania. The writing committee was tasked with reviewing key aspects of the ACHD-NC's role in team-based ACHD care. RESULTS/CONCLUSION: The resulting ISACHD position statement addresses the ACHD-NC's role and skills required in organizing, coordinating, and facilitating the care of adults with CHD, holistic assessment of the ACHD patient, patient education and counseling, and support for self-care management and self-advocacy.


Assuntos
Atenção à Saúde/normas , Cardiopatias Congênitas/terapia , Equipe de Assistência ao Paciente , Adulto , Comitês Consultivos , Competência Clínica , Cardiopatias Congênitas/enfermagem , Humanos , Papel do Profissional de Enfermagem , Defesa do Paciente , Guias de Prática Clínica como Assunto , Autocuidado
7.
Front Neurol ; 5: 95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971074

RESUMO

Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson's disease developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID) is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography and functional magnetic resonance imaging. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.

8.
PLoS One ; 9(4): e94555, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743600

RESUMO

Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Acetilação , Acetiltransferases/genética , Aminoácidos/metabolismo , Animais , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Gluconeogênese , Glicólise , Fígado/metabolismo , Masculino , Via de Pentose Fosfato , Polimorfismo Genético , Processamento de Proteína Pós-Traducional , Proteômica , Purinas/metabolismo , Pirimidinas/metabolismo , Ratos , Análise de Sequência de RNA , Sirtuína 3/genética , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA