Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 10(5): 729-37, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24651920

RESUMO

Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the other three approaches gave details at the nano-level. We observe that Pluronic micelles, organizing in cubic ordered domains, generate, upon alginate crosslinking, the formation of meshes (≈ 150 nm) larger than those occurring in a Pluronic-free alginate network (≈ 25 nm). Nevertheless, smaller alginate meshes are still on and can just host un-structured Pluronic micelles and water. Accordingly, the gel structure is quite inhomogeneous, where big meshes (filled by crystalline Pluronic) co-exist with smaller meshes (hosting water and un-structured PF127 micelles). While big meshes offer a considerable hindering action on a diffusing solute, smaller ones represent a sort of free space where solute diffusion is faster. The presence of big and small meshes indicates that drug release may follow a double kinetics characterized by a fast and slow release. Notably, this behavior is considered appropriate for endoluminal drug release to the arterial wall.


Assuntos
Alginatos/química , Portadores de Fármacos/química , Géis/química , Micelas , Poloxâmero/química
2.
Plants (Basel) ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903936

RESUMO

In recent years, natural compounds have gained attention in many fields due to their wide-range biological activity. In particular, essential oils and their associated hydrosols are being screened to control plant pests, exerting antiviral, antimycotic and antiparasitic actions. They are more quickly and cheaply produced and are generally considered safer for the environment and non-target organisms than conventional pesticides. In this study, we report the evaluation of the biological activity of two essential oils and their corresponding hydrosols obtained from Mentha suaveolens and Foeniculum vulgare in the control of zucchini yellow mosaic virus and its vector, Aphis gossypii, in Cucurbita pepo plants. The control of the virus was ascertained with treatments applied either concurrently with or after virus infection; choice tests were performed to verify repellency activity against the aphid vector. The results indicated that treatments could decrease virus titer as measured using real-time RT-PCR, while the experiments on the vector showed that the compounds effectively repelled aphids. The extracts were also chemically characterized using gas chromatography-mass spectrometry. Mentha suaveolens and Foeniculum vulgare hydrosol extracts mainly comprised fenchone and decanenitrile, respectively, while essential oils analysis returned a more complex composition, as expected.

3.
Plants (Basel) ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570990

RESUMO

The aim of the study was to investigate how essential oil production and associated chemical composition and related biological activity could be influenced by different cultivation treatments and distillation methods. Foeniculum vulgare Mill. (fennel), Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) were cultivated in absence of any fertilizer (control) and in presence of three different fertilizers: a chemical one with augmented mineral phosphorus and potassium, a second added with hydrolyzed organic substance and mineral phosphorus and potassium (organic-mineral) and a third one treated with a high content of organic nitrogen of protein origin (organic). The plants were subjected to steam distillation using two modalities, recycled and continuous, to obtain 32 essential oil samples. Chemical composition analysis was performed using gas chromatography-mass spectrometry; in vitro antimicrobial activity was evaluated using a broth microdilution method. In general, the recycled distillation method appeared to have a slightly higher yield than the continuous method. The "mineral" and "organic-mineral" treatments resulted in a higher yield compared to the "organic" or "control" treatments, and this was particularly evident in the recycled method. The "control" plants had a lower yield of essential oils. Anethole (13.9-59.5%) and estragole (13.4-52.2%) were the main constituents of the fennel oils; p-cymene and its derivatives carvacrol and thymol were the main constituents of the oregano and thyme samples. The antimicrobial activity of the thyme oils on Staphylococcus aureus ranged from 0.31 to 0.16% (v/v); a lower effect of the oregano samples and no activity of the fennel samples were observed. The essential oils failed to inhibit the growth of Pseudomonas aeruginosa strains.

4.
Front Microbiol ; 13: 840893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547120

RESUMO

In the last decades, the interest in biological activity of natural compounds has been growing. In plant protection, essential oils have been reported to exhibit antiviral, antimycotic, and antiparasitic activities, and are regarded as promising for the formulation of safe antimicrobial agents. Attention has also been focused on hydrosols, the by-products of hydro-distillation of essential oils. Their production is easy, fast, and cheap, and they seem to arise less concern for human health than essential oils. Plant viruses represent a major concern for agricultural crops since no treatment compound is available for virus control. This work was aimed at evaluating the antiphytoviral effectiveness of treatments with three essential oils and corresponding hydrosols extracted from Origanum vulgare, Thymus vulgaris, and Rosmarinus officinalis on Cucurbita pepo plants infected by zucchini yellow mosaic virus or tomato leaf curl New Delhi virus. Treatments were applied either concurrently or after virus inoculation to ascertain an inhibition or curative activity, respectively. Symptoms were observed and samplings were performed weekly. Virus titer and expression levels of phenylalanine ammonia lyase gene (PAL) were measured on treated and untreated infected plants by real-time PCR. PAL gene plays an important role in plant defense response as it is involved in tolerance/resistance to phytopathogens. Results indicated that treatments were effective against tomato leaf curl New Delhi virus whether applied simultaneously with the inoculation or after. A major inhibition was observed with O. vulgare essential oil and hydrosol, resulting in 10-4-fold decrease of virus titer 3 weeks after treatment. Curative activity gave maximum results with all three essential oils and T. vulgaris and R. officinalis hydrosols, recording from 10-2-fold decrease to virus not detected 4 weeks after treatment. An induction of PAL gene expression was recorded at 12 d.p.i. and then was restored to the levels of untreated control. This allows to hypothesize an early plant defense response to virus infection, possibly boosted by treatments. Plant extracts' composition was characterized by gas chromatography-mass spectrometry. Phenols were largely main components of O. vulgare and T. vulgaris extracts (carvacrol and thymol, respectively), while extracts from R. officinalis were based on monoterpene hydrocarbons (essential oil) and oxygenated monoterpenes (hydrosol).

5.
Int J Biol Macromol ; 78: 363-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25910645

RESUMO

The present manuscript addresses the description of binary systems of hyaluronan (HA) and alginate (Alg) in semi-concentrated solution. The two polysaccharides were completely miscible in the entire range of relative weight fraction explored at a total polymer concentration of up to 3% (w/V). The rheological study encompassed steady flow and mechanical spectra for HA/Alg systems at different weight fractions with hyaluronan at different molecular weights. These extensive analyses allowed us to propose a model for the molecular arrangement in solution that envisages a mutual exclusion between the two polysaccharides even though a clear phase separation does not occur. This result may have profound implications when combinations of alginate and hyaluronan are proposed in the field of biomedical materials.


Assuntos
Alginatos/química , Ácido Hialurônico/química , Reologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Soluções , Viscosidade
6.
Eur J Pharm Sci ; 50(1): 17-28, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23567466

RESUMO

This review deals with the mathematical models describing the reduction of melting temperature and enthalpy of solids in the nano-size range. In particular, the attention focuses on the thermodynamic based models that are theoretically solid and can be suitably used in the case of organic drugs. Indeed, while much effort has been put in the past to study the melting of metal nano-crystals, little work has been done for organic drug nano-crystals. However, due to the high potential of drug nano-crystals (their solubility increases with size reduction), this theme has become more and more important in the pharmaceutical field. Accordingly, this review, after illustrating the physical frame of drug melting, focuses on the thermodynamic aspects required to describe the melting of spherical and not spherical nano-crystals. Finally, the reliability of some models is tested against the results coming from X-rays analysis in the case of two organic drugs (griseofulvin and nifedipine). This test proved models strength.


Assuntos
Modelos Teóricos , Nanopartículas/química , Compostos Orgânicos/química , Preparações Farmacêuticas/química , Temperatura de Transição , Cristalização , Cristalografia por Raios X , Griseofulvina/química , Nifedipino/química , Transição de Fase , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA