RESUMO
Plant pathogens secrete effector proteins to support host colonization through a wide range of molecular mechanisms, while plant immune systems evolved receptors to recognize effectors or their activities to mount immune responses to halt pathogens. Importantly, plants do not act as single organisms, but rather as holobionts that actively shape their microbiota as a determinant of health. The soil-borne fungal pathogen Verticillium dahliae was recently demonstrated to exploit the VdAve1 effector to manipulate the host microbiota to promote vascular wilt disease in the absence of the corresponding immune receptor Ve1. We identify a multiallelic V. dahliae gene displaying c. 65% sequence similarity to VdAve1, named VdAve1-like (VdAve1L), which shows extreme sequence variation, including alleles that encode dysfunctional proteins, indicative of selection pressure to overcome host recognition. We show that the orphan cell surface receptor Ve2, encoded at the Ve locus, does not recognize VdAve1L. Additionally, we demonstrate that the full-length variant VdAve1L2 possesses antimicrobial activity, like VdAve1, yet with a divergent activity spectrum, that is exploited by V. dahliae to mediate tomato colonization through the direct suppression of antagonistic Actinobacteria in the host microbiota. Our findings open up strategies for more targeted biocontrol against microbial plant pathogens.
Assuntos
Actinobacteria , Verticillium , Proteínas de Plantas/metabolismo , Virulência , Actinobacteria/genética , Actinobacteria/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMO
Chitin is a homopolymer of ß-(1,4)-linked N-acetyl-D-glucosamine (GlcNAc) and a major structural component of fungal cell walls. In plants, chitin acts as a microbe-associated molecular pattern (MAMP) that is recognized by lysin motif (LysM)-containing plant cell surface-localized pattern recognition receptors (PRRs) that activate a plethora of downstream immune responses. To deregulate chitin-induced plant immunity and successfully establish infection, many fungal pathogens secrete LysM domain-containing effector proteins during host colonization. The LysM effector Ecp6 from the tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum can outcompete plant PRRs for chitin binding because two of its three LysM domains cooperate to form a composite groove with ultra-high (pM) chitin-binding affinity. However, most functionally characterized LysM effectors contain only two LysMs, including Magnaporthe oryzae MoSlp1, Verticillium dahliae Vd2LysM, and Colletotrichum higginsianum ChElp1 and ChElp2. Here, we performed modeling, structural, and functional analyses to investigate whether such dual-domain LysM effectors can also form ultra-high chitin-binding affinity grooves through intramolecular LysM dimerization. However, our study suggests that intramolecular LysM dimerization does not occur. Rather, our data support the occurrence of intermolecular LysM dimerization for these effectors, associated with a substantially lower chitin binding affinity than monitored for Ecp6. Interestingly, the intermolecular LysM dimerization allows for the formation of polymeric complexes in the presence of chitin. Possibly, such polymers may precipitate at infection sites to eliminate chitin oligomers, and thus suppress the activation of chitin-induced plant immunity.
Assuntos
Quitina , Solanum lycopersicum , Quitina/metabolismo , Dimerização , Proteínas Fúngicas/metabolismo , Imunidade Vegetal , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologiaRESUMO
The spatial organization of eukaryotic genomes is linked to their biological functions, although it is not clear how this impacts the overall evolution of a genome. Here, we uncover the three-dimensional (3D) genome organization of the phytopathogen Verticillium dahliae, known to possess distinct genomic regions, designated adaptive genomic regions (AGRs), enriched in transposable elements and genes that mediate host infection. Short-range DNA interactions form clear topologically associating domains (TADs) with gene-rich boundaries that show reduced levels of gene expression and reduced genomic variation. Intriguingly, TADs are less clearly insulated in AGRs than in the core genome. At a global scale, the genome contains bipartite long-range interactions, particularly enriched for AGRs and more generally containing segmental duplications. Notably, the patterns observed for V. dahliae are also present in other Verticillium species. Thus, our analysis links 3D genome organization to evolutionary features conserved throughout the Verticillium genus.
Assuntos
Genômica , Plantas , Plantas/genética , Elementos de DNA Transponíveis/genética , Cromatina/genética , Evolução Molecular , Genoma Fúngico/genéticaRESUMO
Hybridization is an important evolutionary mechanism that can enable organisms to adapt to environmental challenges. It has previously been shown that the fungal allodiploid species Verticillium longisporum, the causal agent of verticillium stem striping in rapeseed, originated from at least three independent hybridization events between two haploid Verticillium species. To reveal the impact of genome duplication as a consequence of hybridization, we studied the genome and transcriptome dynamics upon two independent V. longisporum hybridization events, represented by the hybrid lineages "A1/D1" and "A1/D3." We show that V. longisporum genomes are characterized by extensive chromosomal rearrangements, including between parental chromosomal sets. V. longisporum hybrids display signs of evolutionary dynamics that are typically associated with the aftermath of allodiploidization, such as haploidization and more relaxed gene evolution. The expression patterns of the two subgenomes within the two hybrid lineages are more similar than those of the shared A1 parent between the two lineages, showing that the expression patterns of the parental genomes homogenized within a lineage. However, as genes that display differential parental expression in planta do not typically display the same pattern in vitro, we conclude that subgenome-specific responses occur in both lineages. Overall, our study uncovers genomic and transcriptomic plasticity during the evolution of the filamentous fungal hybrid V. longisporum and illustrates its adaptive potential. IMPORTANCEVerticillium is a genus of plant-associated fungi that includes a few plant pathogens that collectively affect a wide range of hosts. On several occasions, haploid Verticillium species hybridized into the stable allodiploid species Verticillium longisporum, which is, in contrast to haploid Verticillium species, a Brassicaceae specialist. Here, we studied the evolutionary genome and transcriptome dynamics of V. longisporum and the impact of the hybridization. V. longisporum genomes display a mosaic structure due to genomic rearrangements between the parental chromosome sets. Similar to other allopolyploid hybrids, V. longisporum displays an ongoing loss of heterozygosity and more relaxed gene evolution. Also, differential parental gene expression is observed, with enrichment for genes that encode secreted proteins. Intriguingly, the majority of these genes display subgenome-specific responses under differential growth conditions. In conclusion, hybridization has incited the genomic and transcriptomic plasticity that enables adaptation to environmental changes in a parental allele-specific fashion.
Assuntos
Ascomicetos/genética , Evolução Molecular , Expressão Gênica , Genoma Fúngico , Filogenia , Doenças das Plantas/microbiologiaRESUMO
BACKGROUND: Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS: Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS: Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.
Assuntos
Agaricales , Doenças das Plantas , Agaricales/genética , Humanos , Estilo de Vida , FilogeniaRESUMO
Plants recognize a wide variety of microbial molecules to detect and respond to potential invaders. Recognition of Microbe-Associated Molecular Patterns (MAMPs) by cell surface receptors initiate a cascade of biochemical responses that include, among others, ion fluxes across the plasma membrane. A consequence of such event is a decrease in the concentration of extracellular H+ ions, which can be experimentally detected in plant cell suspensions as a shift in the pH of the medium. Thus, similarly to reactive oxygen species (ROS) accumulation, phosphorylation of MAP kinases and induction of defense-related genes, MAMP-induced medium alkalinization can be used as a proxy for the activation of plant immune responses. Here, we describe a detailed protocol for the measurement of medium alkalinization of tobacco BY-2 cell suspensions upon treatment with two different MAMPs: chitohexamers derived from fungal cell walls (NAG6; N-acetylglucosamine) and the flagellin epitope flg22, found in the bacterial flagellum. This method provides a reliable and fast platform to access MAMP-Triggered Immunity (MTI) in tobacco cell suspensions and can be easily adapted to other plant species as well as to other MAMPs.
RESUMO
Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution. Chromatin immunoprecipitation of the centromere-specific histone CenH3 (ChIP-seq) and chromatin conformation capture (Hi-C) followed by high-throughput sequencing identified eight conserved, large (â¼150-kb), AT-, and repeat-rich regional centromeres that are embedded in heterochromatin in the plant pathogen Verticillium dahliae Using Hi-C, we similarly identified repeat-rich centromeres in the other Verticillium species. Strikingly, a single degenerated long terminal repeat (LTR) retrotransposon is strongly associated with centromeric regions in some but not all Verticillium species. Extensive chromosomal rearrangements occurred during Verticillium evolution, of which some could be linked to centromeres, suggesting that centromeres contributed to chromosomal evolution. The size and organization of centromeres differ considerably between species, and centromere size was found to correlate with the genome-wide repeat content. Overall, our study highlights the contribution of repetitive elements to the diversity and rapid evolution of centromeres within the fungal genus VerticilliumIMPORTANCE The genus Verticillium contains 10 species of plant-associated fungi, some of which are notorious pathogens. Verticillium species evolved by frequent chromosomal rearrangements that contribute to genome plasticity. Centromeres are instrumental for separation of chromosomes during mitosis and meiosis, and failed centromere functionality can lead to chromosomal anomalies. Here, we used a combination of experimental techniques to identify and characterize centromeres in each of the Verticillium species. Intriguingly, we could strongly associate a single repetitive element to the centromeres of some of the Verticillium species. The presence of this element in the centromeres coincides with increased centromere sizes and genome-wide repeat expansions. Collectively, our findings signify a role of repetitive elements in the function, organization, and rapid evolution of centromeres in a set of closely related fungal species.