Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
2.
J Evol Biol ; 37(5): 487-500, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38483086

RESUMO

Sexual dimorphism can evolve in response to sex-specific selection pressures that vary across habitats. We studied sexual differences in subterranean amphipods Niphargus living in shallow subterranean habitats (close to the surface), cave streams (intermediate), and cave lakes (deepest and most isolated). These three habitats differ because at greater depths there is lower food availability, reduced predation, and weaker seasonality. Additionally, species near the surface have a near-even adult sex ratio (ASR), whereas species from cave lakes have a female-biased ASR. We hypothesized (a) a decrease in sexual dimorphism from shallow subterranean habitats to cave lake species because of weaker sexual selection derived from changes in the ASR and (b) an increase in female body size in cave lakes because of stronger fecundity selection on account of oligotrophy, reduced predation, and weaker seasonality. We measured body size and two sexually dimorphic abdominal appendages for all 31 species and several behaviours related to male competition (activity, risk-taking, exploration) for 12 species. Species with an equal ASR that live close to the surface exhibited sexual dimorphism in all three morphological traits, but not in behaviour. The body size of females increased from the surface to cave lakes, but no such trend was observed in males. In cave lake species, males and females differed neither morphologically nor behaviourally. Our results are consistent with the possibility that sexual and fecundity selection covary across the three habitats, which indirectly and directly, respectively, shape the degree of sexual dimorphism in Niphargus species.


Assuntos
Anfípodes , Ecossistema , Caracteres Sexuais , Animais , Feminino , Masculino , Anfípodes/fisiologia , Anfípodes/anatomia & histologia , Tamanho Corporal , Lagos , Razão de Masculinidade
3.
Ecotoxicol Environ Saf ; 236: 113456, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395599

RESUMO

Secondary salinization of freshwater is becoming a growing environmental problem. Currently, there is few data available on the effects of salinisation on subterranean crustaceans that are vital for the maintenance of groundwater ecosystem functioning. In this study, the sensitivity of subterranean Niphargus amphipods to NaCl was investigated. We expected that cave-dwelling species would be more sensitive as surface-subterranean boundary species. Eight ecologically different Niphargus species were tested: four live at the boundary between the surface and subterranean ecosystems (N. timavi, N. krameri, N. sphagnicolus, N. spinulifemur), three live in cave streams (N. stygius, N. scopicauda, N. podpecanus), and one species (N. hebereri) lives in anchialine caves and wells. The organisms were exposed to five concentrations of NaCl for 96 h and afterwards the immobility, mortality, and electron transfer system (ETS) activity (a measure for metabolic rate of animals) were evaluated. As expected, the most tolerant species was N. hebereri dwelling in naturally high-salinity habitat. However, contrary to our expectations, the species collected at the surface-subterranean boundary were more sensitive as cave stream species when their immobility and mortality were assessed. Interestingly, the majority of Niphargus tested were more NaCl tolerant as can be deduced from currently available data for subterranean and surface crustaceans. We could not observe a clear trend in ETS activity changes between groups of surface-subterranean boundary and cave streams species after exposure to NaCl stress, but it appears that osmotic stress-induced metabolic rate changes are species-specific. This study shows that amphipods Niphargus can be a valuable subterranean environmental research model and further ecotoxicity research is of interest.


Assuntos
Anfípodes , Animais , Cavernas , Ecossistema , Salinidade , Cloreto de Sódio
4.
J Evol Biol ; 34(10): 1653-1661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34424594

RESUMO

Sex allocation theory predicts that the proportion of daughters to sons will evolve in response to ecological conditions that determine the costs and benefits of producing each sex. All else being equal, the adult sex ratio (ASR) should also vary with ecological conditions. Many studies of subterranean species reported female-biased ASR, but no systematic study has yet been conducted. We test the hypothesis that the ASR becomes more female-biased with increased isolation from the surface. We compiled a data set of ASRs of 35 species in the subterranean amphipod Niphargus, each living in one of three distinct habitats (surface-subterranean boundary, cave streams, phreatic lakes) representing an environmental gradient of increased isolation underground. The ASR was female-biased in 27 of 35 species; the bias was statistically significant in 12 species. We found a significant difference in the ASR among habitats after correction for phylogeny. It is most weakly female-biased at the surface-subterranean boundary and most strongly female-biased in phreatic lakes. Additional modelling suggests that the ASR has evolved towards a single value for both surface-subterranean boundary and cave stream-dwelling species, and another value for 9 of 11 phreatic lake dwellers. We suggest that a history of inbreeding in subterranean populations might lower inbreeding depression such that kin selection favours mating with siblings. This could select for a female-biased offspring sex ratio due to local mate competition among brothers. The observed patterns in sex ratios in subterranean species make them a group worthy of more attention from those interested in sex allocation theory.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Cavernas , Ecossistema , Feminino , Masculino , Filogenia , Razão de Masculinidade
5.
Mol Phylogenet Evol ; 143: 106664, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669816

RESUMO

The ecological radiation of amphipods is striking among crustaceans. Despite high diversity, global distribution and key roles in all aquatic environments, little is known about their ecological transitions, evolutionary timescale and phylogenetic relationships. It has previously been proposed that the amphipod ecological diversification began in the Late Palaeozoic. By contrast, due to their affinity for cold/oxygenated water and absence of pre-Cenozoic fossils, we hypothesized that the ecological divergence of amphipods arose throughout the cool Late Mesozoic/Cenozoic. We tested our hypothesis by inferring a large-scale, time-calibrated, multilocus phylogeny, and reconstructed evolutionary patterns for major ecological traits. Although our results reveal a Late Palaeozoic amphipod origin, diversification and ecological divergence ensued only in the Late Mesozoic, overcoming a protracted stasis in marine littoral habitats. Multiple independent post-Jurassic radiations took place in deep-sea, freshwater, terrestrial, pelagic and symbiotic environments, usually postdating deep-sea faunal extinctions, and corresponding with significant climatic cooling, tectonic reconfiguration, continental flooding, and increased oceanic oxygenation. We conclude that the profound Late Mesozoic global changes triggered a tipping point in amphipod evolution by unlocking ecological opportunities that promoted radiation into many new niches. Our study also provides a solid, time-calibrated, evolutionary framework to accelerate research on this overlooked, yet globally important taxon.


Assuntos
Anfípodes/classificação , Anfípodes/genética , Animais , Evolução Biológica , Fenômenos Ecológicos e Ambientais , Fósseis , Oceanos e Mares , Filogenia
6.
Mol Ecol ; 27(3): 613-635, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334414

RESUMO

The species concept is the cornerstone of biodiversity science, and any paradigm shift in the delimitation of species affects many research fields. Many biologists now are embracing a new "species" paradigm as separately evolving populations using different delimitation criteria. Individual criteria can emerge during different periods of speciation; some may never evolve. As such, a paradigm shift in the species concept relates to this inherent heterogeneity in the speciation process and species category-which is fundamentally overlooked in biodiversity research. Cryptic species fall within this paradigm shift: they are continuously being reported from diverse animal phyla but are poorly considered in current tests of ecological and evolutionary theory. The aim of this review is to integrate cryptic species in biodiversity science. In the first section, we address that the absence of morphological diversification is an evolutionary phenomenon, a "process" counterpart to the long-studied mechanisms of morphological diversification. In the next section regarding taxonomy, we show that molecular delimitation of cryptic species is heavily biased towards distance-based methods. We also stress the importance of formally naming of cryptic species for better integration into research fields that use species as units of analysis. Finally, we show that incorporating cryptic species leads to novel insights regarding biodiversity patterns and processes, including large-scale biodiversity assessments, geographic variation in species distribution and species coexistence. It is time for incorporating multicriteria species approaches aiming to understand speciation across space and taxa, thus allowing integration into biodiversity conservation while accommodating for species uncertainty.


Assuntos
Especiação Genética , Anfípodes/fisiologia , Animais , Biodiversidade , Bases de Dados como Assunto , Filogenia , Especificidade da Espécie
7.
Mol Phylogenet Evol ; 119: 37-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29108937

RESUMO

Groundwater is an extreme environment due to its absence of light, resource scarcity and highly fragmentary nature. Successful groundwater colonizers underwent major evolutionary changes and exhibit eye and pigment loss (troglomorphies). Consequently, their chances of dispersal and survival in the well-connected surface waters are greatly decreased, resulting in significant endemism. The West Palaearctic subterranean amphipod genus Niphargus comprises hundreds of narrowly endemic and troglomorphic species. Nevertheless, a few are known to occur in surface waters, two of which, N. hrabei and N. valachicus, have extremely large ranges that even exceed those of many surface-water amphipods. We tested if this pattern results from a secondary colonization of the relatively well-connected epigean environment, and whether this ecological shift promoted the large-scale dispersal of these species. Results showed that despite their ecological and zoogeographic similarities, N. hrabei and N. valachicus are not closely related and independently colonized surface waters. Their phylogeographic patterns indicate Middle to Late Pleistocene dispersal episodes throughout the Danube lowlands, and relatively modest yet significant genetic differentiation among populations. Clustering based on morphology revealed that the two species are phenotypically closer to each other than they are to most other epigean congeners. We presume that the ecological shift to surface environments was facilitated by their ability to thrive in hypoxic waters where rheophilic competitors from the family Gammaridae cannot survive. In conclusion, our results indicate that adaptation to groundwater is not a one-way evolutionary path and that troglomorphic species can occasionally recolonize and widely disperse in surface waters.


Assuntos
Anfípodes/fisiologia , Migração Animal/fisiologia , Água Subterrânea , Anfípodes/genética , Animais , Teorema de Bayes , Evolução Biológica , Análise por Conglomerados , Haplótipos/genética , Fenótipo , Filogenia , Filogeografia , Polimorfismo Genético , Especificidade da Espécie
8.
Naturwissenschaften ; 103(1-2): 7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26757929

RESUMO

Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.


Assuntos
Anfípodes/anatomia & histologia , Anfípodes/fisiologia , Ecossistema , Luz , Distribuição Animal/fisiologia , Animais , Olho , Especificidade da Espécie
9.
Proc Natl Acad Sci U S A ; 108(35): 14533-8, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21844362

RESUMO

Current theory predicts that a shift to a new habitat would increase the rate of diversification, while as lineages evolve into multiple species, intensified competition would decrease the rate of diversification. We used Holarctic amphipods of the genus Gammarus to test this hypothesis. We sequenced four genes (5,088 bp) for 289 samples representing 115 Gammarus species. A phylogenetic analysis showed that Gammarus originated from the Tethyan region with a saline ancestry in the Paleocene, and later colonized the freshwater habitat in the Middle Eocene. Ancestral range reconstruction and diversification mode analysis combined with paleogeological and paleoclimatic evidence suggested that the habitat shift from saline to freshwater led to an increased diversification rate. The saline lineage of Gammarus dispersed to both sides of the Atlantic at 55 million years ago (Ma), because of the few barriers between the Tethys and the Atlantic, and diversified throughout its evolutionary history with a constant diversification rate [0.04 species per million years (sp/My)]. The freshwater Gammarus, however, underwent a rapid diversification phase (0.11 sp/My) until the Middle Miocene, and lineages successively diversified across Eurasia via vicariance process likely driven by changes of the Tethys and landmass. In particular, the freshwater Gammarus lacustris and Gammarus balcanicus lineages had a relatively high diversification shift, corresponding to the regression of the Paratethys Sea and the continentalization of Eurasian lands during the Miocene period. Subsequently (14 Ma), the diversification rate of the freshwater Gammarus decreased to 0.05 and again to 0.01 sp/My. The genus Gammarus provides an excellent aquatic case supporting the hypothesis that ecological opportunities promote diversification.


Assuntos
Anfípodes/classificação , Ecossistema , Anfípodes/genética , Animais , Biodiversidade , Ecologia , Água Doce , Filogenia , Água do Mar
10.
Sci Data ; 11(1): 188, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341425

RESUMO

Groundwater represents a vast, but mostly hidden and inaccessible ecosystem. Although often overlooked in freshwater research, groundwater organisms form a significant part of freshwater biodiversity, whereas their functions are crucial in different ecosystem processes. Knowledge on functional traits is generally lacking for most groundwater species worldwide, yet European groundwater amphipods, particularly the family Niphargidae, are an exception. They are well-researched and used as a model system in ecological and evolutionary studies. We focused on this group to assemble a first functional trait dataset dedicated to groundwater species. We gathered data for eight morphological functional traits quantified through 27 measurements for 1123 individuals which represent 180 species and 314 MOTUs. Besides functional trait data, every entry is accompanied with locality information, including habitat type, and DNA sequences if available. The structure of the dataset and data processing information provided along enable wide applicability and extension to other amphipod taxa. When coupled with phylogeny, the dataset may further enhance different aspects of groundwater research, including biodiversity patterns, community assembly processes, and trait evolution.


Assuntos
Anfípodes , Água Subterrânea , Animais , Anfípodes/genética , Biodiversidade , Ecossistema , Filogenia
11.
Zoology (Jena) ; 161: 126120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696118

RESUMO

Body size is one of the main characteristics of any organism and influences various aspects of individual's biology. In animal ecology, it represents a key functional trait that can be quantified using different measures and is often used as a proxy for different organismal functions. The way we quantify body size is critical in any study using this measure alone or to scale other organismal traits. It is especially important in groups that act as model systems across different fields of biological research. One of such groups are amphipods, which are at focus in many ecological studies where appropriate quantification of body size is needed. Here, we explored the relationship between body length and body mass in the largest freshwater amphipod genus Niphargus, and evaluated whether the two measures lead to different conclusions in a putative ecological study of species coexistence. We selected 16 species inhabiting two different subterranean habitats, cave lakes and cave streams. The relationship between log-transformed body mass and body length was linear in all species, but body mass increased steeper among species from cave lakes than from cave streams, reflecting the stouter body shape of the former. In the simulated ecological study, the comparisons of the two measures showed that they may yield different results: in 10 % of cases, body length detected differences between species when body mass did not and vice versa (13 %). Usage of body length or body mass can thus lead to different conclusions. We recommend avoiding direct transformations between body length and body mass in ecological studies. Whenever needed, such transformations should be done with caution using habitat-specific body mass - body length ratios.


Assuntos
Anfípodes , Animais , Ecossistema , Rios , Tamanho Corporal , Lagos
12.
Curr Zool ; 69(4): 418-425, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37614916

RESUMO

Populations experiencing negligible predation pressure are expected to evolve higher behavioral activity. However, when sexes have different expected benefits from high activity, the adaptive shift is expected to be sex-specific. Here, we compared movement activity of one cave (lack of predation) and three adjacent surface (high and diverse predation) populations of Asellus aquaticus, a freshwater isopod known for its independent colonization of several caves across Europe. We predicted 1) higher activity in cave than in surface populations, with 2) the difference being more pronounced in males as they are known for active mate searching behavior, while females are not. Activity was assessed both in the presence and absence of light. Our results supported both predictions: movement activity was higher in the cave than in the surface populations, particularly in males. Relaxed predation pressure in the cave-adapted population is most likely the main selective factor behind increased behavioral activity, but we also showed that the extent of increase is sex-specific.

13.
Environ Toxicol Chem ; 42(9): 1889-1914, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37314101

RESUMO

The advent of genetic methods has led to the discovery of an increasing number of species that previously could not be distinguished from each other on the basis of morphological characteristics. Even though there has been an exponential growth of publications on cryptic species, such species are rarely considered in ecotoxicology. Thus, the particular question of ecological differentiation and the sensitivity of closely related cryptic species is rarely addressed. Tackling this question, however, is of key importance for evolutionary ecology, conservation biology, and, in particular, regulatory ecotoxicology. At the same time, the use of species with (known or unknown) cryptic diversity might be a reason for the lack of reproducibility of ecotoxicological experiments and implies a false extrapolation of the findings. Our critical review includes a database and literature search through which we investigated how many of the species most frequently used in ecotoxicological assessments show evidence of cryptic diversity. We found a high proportion of reports indicating overlooked species diversity, especially in invertebrates. In terrestrial and aquatic realms, at least 67% and 54% of commonly used species, respectively, were identified as cryptic species complexes. The issue is less prominent in vertebrates, in which we found evidence for cryptic species complexes in 27% of aquatic and 6.7% of terrestrial vertebrates. We further exemplified why different evolutionary histories may significantly determine cryptic species' ecology and sensitivity to pollutants. This in turn may have a major impact on the results of ecotoxicological tests and, consequently, the outcome of environmental risk assessments. Finally, we provide a brief guideline on how to deal practically with cryptic diversity in ecotoxicological studies in general and its implementation in risk assessment procedures in particular. Environ Toxicol Chem 2023;42:1889-1914. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Poluentes Ambientais , Animais , Ecotoxicologia/métodos , Reprodutibilidade dos Testes , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Invertebrados , Medição de Risco
14.
Sci Rep ; 13(1): 20735, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007573

RESUMO

Climate change affects all ecosystems, but subterranean ecosystems are repeatedly neglected from political and public agendas. Cave habitats are home to unknown and endangered species, with low trait variability and intrinsic vulnerability to recover from human-induced disturbances. We studied the annual variability and cyclicity of temperatures in caves vis-à-vis surface in different climatic areas. We hypothesize that cave temperatures follow the average temperature pattern at the surface for each location with a slight delay in the signal, but we found three different thermal patterns occurring in caves: (1) high positive correlation and a similar thermal pattern to the surface, (2) low correlation and a slight thermal delay of the signal from the surface, and (3) high negative correlation with an extreme delay from the surface. We found daily thermal cycles in some caves, which may potentially control the circadian rhythms of cave organisms. Our results show that caves had lower thermal amplitude than the surface, and that thermal averages within caves approximately correspond to the to the annual average of surface temperature. Caves buffer external temperature and act as refugia for biota in extreme climatic events. Likewise, temperature increases at surface will lead to increment in caves, threatening subterranean biota and ecosystem services.


Assuntos
Cavernas , Ecossistema , Animais , Humanos , Temperatura , Biota , Espécies em Perigo de Extinção
15.
Biol Lett ; 8(4): 578-81, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22513281

RESUMO

It has been suggested that both niche-based and neutral mechanisms are important for biological communities to evolve and persist. For communities in extreme and isolated environments such as caves, theoretical and empirical considerations (low species turnover, high stress, strong convergence owing to strong directional selection) predict neutral mechanisms and functional equivalence of species. We tested this prediction using subterranean amphipod communities from caves and interstitial groundwater. Contrary to expectations, functional morphological diversity within communities in both habitats turned out to be significantly higher than the null model of randomly assembled communities. This suggests that even the most extreme, energy-poor environments still maintain the potential for diversification via differentiation of niches.


Assuntos
Anfípodes/anatomia & histologia , Anfípodes/fisiologia , Biota , Ecossistema , Estruturas Animais/anatomia & histologia , Animais , Evolução Biológica , Tamanho Corporal , Cavernas , Água Subterrânea , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
16.
Biol Rev Camb Philos Soc ; 97(4): 1476-1510, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315207

RESUMO

Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.


Assuntos
Biodiversidade , Ecossistema , Cavernas , Conservação dos Recursos Naturais/métodos , Ecologia , Água Doce
17.
Sci Rep ; 11(1): 21682, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737417

RESUMO

Predator-prey interactions are among the most important biotic interactions shaping ecological communities and driving the evolution of defensive traits. These interactions and their effects on species received little attention in extreme and remote environments, where possibilities for direct observations and experimental manipulation of the animals are limited. In this paper, we study such type of environment, namely caves of the Dinarides (Europe), combining spatial and phylogenetic methods. We focused on several species of Niphargus amphipods living in phreatic lakes, as some of them use the dorsal spines as putative morphological defensive traits. We predicted that these spines represent a defense strategy against the olm (Proteus anguinus), a top predator species in the subterranean waters. We tested for spatial overlap of the olm and Niphargus species and showed that spined species live in closer proximity to and co-occur more frequently with the olm than non-spined species. Modeling of the evolution of the spines onto Niphargus phylogeny implies coevolution of this trait in the presence of olm. We conclude that these spines likely evolved as defensive traits in a predator-prey arms race. Combining multiple analyses, we provide an example for a methodological framework to assess predator-prey interactions when in-situ or laboratory observations are not possible.


Assuntos
Comportamento Apetitivo/fisiologia , Coevolução Biológica/fisiologia , Comportamento Predatório/fisiologia , Anfípodes/fisiologia , Animais , Evolução Biológica , Cavernas , Ecossistema , Ambientes Extremos , Cadeia Alimentar , Fenótipo , Filogenia , Proteidae/fisiologia
18.
Ecol Evol ; 11(21): 15389-15403, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765185

RESUMO

Studying parallel evolution (repeated, independent evolution of similar phenotypes in similar environments) is a powerful tool to understand environment-dependent selective forces. Surface-dwelling species that repeatedly and independently colonized caves provide unique models for such studies. The primarily surface-dwelling Asellus aquaticus species complex is a good candidate to carry out such research, because it colonized several caves in Europe. By comparing 17 functional morphological traits between six cave and nine surface populations of the A. aquaticus species complex, we investigated population divergence in morphology and sexual dimorphism. We found habitat-dependent population divergence in 10 out of 17 traits, likely reflecting habitat-driven changes in selection acting on sensory systems, feeding, grooming, and antipredator mechanisms. Sexual dimorphism was present in 15 traits, explained by sexual selection acting on male traits important in male-male agonistic behavior or mate guarding and fecundity selection acting on female traits affecting offspring number and nursing. In eight traits, the degree of sexual dimorphism was habitat dependent. We conclude that cave-related morphological changes are highly trait- and function-specific and that the strength of sexual/fecundity selection strongly differs between cave and surface habitats. The considerable population variation within habitat type warrants further studies to reveal cave-specific adaptations besides the parallel patterns.

19.
Nat Commun ; 12(1): 3688, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140494

RESUMO

Adaptive radiations are bursts of evolutionary species diversification that have contributed to much of the species diversity on Earth. An exception is modern Europe, where descendants of ancient adaptive radiations went extinct, and extant adaptive radiations are small, recent and narrowly confined. However, not all legacy of old radiations has been lost. Subterranean environments, which are dark and food-deprived, yet buffered from climate change, have preserved ancient lineages. Here we provide evidence of an entirely subterranean adaptive radiation of the amphipod genus Niphargus, counting hundreds of species. Our modelling of lineage diversification and evolution of morphological and ecological traits using a time-calibrated multilocus phylogeny suggests a major adaptive radiation, comprised of multiple subordinate adaptive radiations. Their spatio-temporal origin coincides with the uplift of carbonate massifs in South-Eastern Europe 15 million years ago. Emerging subterranean environments likely provided unoccupied, predator-free space, constituting ecological opportunity, a key trigger of adaptive radiation. This discovery sheds new light on the biodiversity of Europe.


Assuntos
Adaptação Fisiológica , Anfípodes/anatomia & histologia , Anfípodes/genética , Evolução Biológica , Especiação Genética , Anfípodes/fisiologia , Animais , Biodiversidade , Bases de Dados de Compostos Químicos , Ecossistema , Europa (Continente) , Europa Oriental , Evolução Molecular , Fenótipo , Filogenia
20.
Zootaxa ; 4772(3): zootaxa.4772.3.5, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33055604

RESUMO

Despite Greece being a global hotspot of subterranean biodiversity, its hypogean fauna is largely neglected from both an ecological and conservational point of view. An overview of the Niphargidae occurring in Greece is presented as an annotated list of all available published records. These records have resulted in an updated species list reflecting taxonomic corrections and species distribution range in the Greek peninsula. A total of 23 species, attributed to 3 genera, is up to date known from Greece with a high rate of endemicity found particularly in Crete. The endemic species of Greece amount to 21 (91% of total species richness), with the remaining species distributing also in the Republic of North Macedonia. Currently, none of them is listed in the national, European or global IUCN Red Lists of Threatened Species. Considering the increasing habitat degradation due to anthropic pressure, groundwater harvesting and climate change we could lose rare and endemic species without even acknowledging their existence.


Assuntos
Anfípodes , Animais , Biodiversidade , Ecossistema , Espécies em Perigo de Extinção , Grécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA