Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Biomed Eng ; 25: 387-412, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37068766

RESUMO

Neurotechnologies for treating pain rely on electrical stimulation of the central or peripheral nervous system to disrupt or block pain signaling and have been commercialized to treat a variety of pain conditions. While their adoption is accelerating, neurotechnologies are still frequently viewed as a last resort, after many other treatment options have been explored. We review the pain conditions commonly treated with electrical stimulation, as well as the specific neurotechnologies used for treating those conditions. We identify barriers to adoption, including a limited understanding of mechanisms of action, inconsistent efficacy across patients, and challenges related to selectivity of stimulation and off-target side effects. We describe design improvements that have recently been implemented, as well as some cutting-edge technologies that may address the limitations of existing neurotechnologies. Addressing these challenges will accelerate adoption and change neurotechnologies from last-line to first-line treatments for people living with chronic pain.


Assuntos
Dor Crônica , Terapia por Estimulação Elétrica , Humanos , Dor Crônica/terapia , Manejo da Dor , Estimulação Elétrica , Sistema Nervoso Periférico
2.
J Physiol ; 601(15): 3103-3121, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36409303

RESUMO

Seventy years ago, Hodgkin and Huxley published the first mathematical model to describe action potential generation, laying the foundation for modern computational neuroscience. Since then, the field has evolved enormously, with studies spanning from basic neuroscience to clinical applications for neuromodulation. Computer models of neuromodulation have evolved in complexity and personalization, advancing clinical practice and novel neurostimulation therapies, such as spinal cord stimulation. Spinal cord stimulation is a therapy widely used to treat chronic pain, with rapidly expanding indications, such as restoring motor function. In general, simulations contributed dramatically to improve lead designs, stimulation configurations, waveform parameters and programming procedures and provided insight into potential mechanisms of action of electrical stimulation. Although the implementation of neural models are relentlessly increasing in number and complexity, it is reasonable to ask whether this observed increase in complexity is necessary for improved accuracy and, ultimately, for clinical efficacy. With this aim, we performed a systematic literature review and a qualitative meta-synthesis of the evolution of computational models, with a focus on complexity, personalization and the use of medical imaging to capture realistic anatomy. Our review showed that increased model complexity and personalization improved both mechanistic and translational studies. More specifically, the use of medical imaging enabled the development of patient-specific models that can help to transform clinical practice in spinal cord stimulation. Finally, we combined our results to provide clear guidelines for standardization and expansion of computational models for spinal cord stimulation.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Humanos , Estimulação da Medula Espinal/métodos , Dor Crônica/terapia , Simulação por Computador , Estimulação Elétrica , Medula Espinal/fisiologia
3.
PLoS Comput Biol ; 16(12): e1008350, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326417

RESUMO

Computational models of the musculoskeletal system are scientific tools used to study human movement, quantify the effects of injury and disease, plan surgical interventions, or control realistic high-dimensional articulated prosthetic limbs. If the models are sufficiently accurate, they may embed complex relationships within the sensorimotor system. These potential benefits are limited by the challenge of implementing fast and accurate musculoskeletal computations. A typical hand muscle spans over 3 degrees of freedom (DOF), wrapping over complex geometrical constraints that change its moment arms and lead to complex posture-dependent variation in torque generation. Here, we report a method to accurately and efficiently calculate musculotendon length and moment arms across all physiological postures of the forearm muscles that actuate the hand and wrist. Then, we use this model to test the hypothesis that the functional similarities of muscle actions are embedded in muscle structure. The posture dependent muscle geometry, moment arms and lengths of modeled muscles were captured using autogenerating polynomials that expanded their optimal selection of terms using information measurements. The iterative process approximated 33 musculotendon actuators, each spanning up to 6 DOFs in an 18 DOF model of the human arm and hand, defined over the full physiological range of motion. Using these polynomials, the entire forearm anatomy could be computed in <10 µs, which is far better than what is required for real-time performance, and with low errors in moment arms (below 5%) and lengths (below 0.4%). Moreover, we demonstrate that the number of elements in these autogenerating polynomials does not increase exponentially with increasing muscle complexity; complexity increases linearly instead. Dimensionality reduction using the polynomial terms alone resulted in clusters comprised of muscles with similar functions, indicating the high accuracy of approximating models. We propose that this novel method of describing musculoskeletal biomechanics might further improve the applications of detailed and scalable models to describe human movement.


Assuntos
Biologia Computacional , Fenômenos Fisiológicos Musculoesqueléticos , Fenômenos Biomecânicos , Antebraço/fisiologia , Humanos , Músculo Esquelético/fisiologia
4.
Physiology (Bethesda) ; 34(2): 150-162, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724129

RESUMO

Autonomic nerves are attractive targets for medical therapies using electroceutical devices because of the potential for selective control and few side effects. These devices use novel materials, electrode configurations, stimulation patterns, and closed-loop control to treat heart failure, hypertension, gastrointestinal and bladder diseases, obesity/diabetes, and inflammatory disorders. Critical to progress is a mechanistic understanding of multi-level controls of target organs, disease adaptation, and impact of neuromodulation to restore organ function.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Cardiopatias/terapia , Animais , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/terapia , Terapia por Estimulação Elétrica/instrumentação , Gastroenteropatias/fisiopatologia , Gastroenteropatias/terapia , Cardiopatias/fisiopatologia , Humanos , Inflamação/fisiopatologia , Inflamação/terapia , Obesidade/fisiopatologia , Obesidade/terapia , Estimulação da Medula Espinal/instrumentação , Estimulação da Medula Espinal/métodos , Doenças da Bexiga Urinária/fisiopatologia , Doenças da Bexiga Urinária/terapia , Estimulação do Nervo Vago/instrumentação , Estimulação do Nervo Vago/métodos
5.
Muscle Nerve ; 59(2): 154-167, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30152101

RESUMO

Post-amputation phantom limb pain (PLP) is a widespread phenomenon that can have physical, psychological, and functional impacts on amputees who experience the condition. The varying presentations and mechanisms of PLP make it difficult to effectively provide long-term pain relief. Multiple neuromodulatory approaches to treating PLP have focused on electrical stimulation of the peripheral nervous system, with varying degrees of success. More recently, research has been done to study the effects of neuroprosthetic approaches on PLP. Neuroprosthetics combine the use of a functional prosthetic with stimulation to the peripheral nerves in the residual limb. Although many of the neuroprosthetic studies focus on improving function, several have shown preliminary evidence for the reduction of severity of PLP. In this review we provide an overview of the current understanding of the neurological mechanisms that initiate and sustain PLP, as well as the neuromodulatory and neuroprosthetic approaches under development for treatment of the condition. Muscle Nerve 59:154-167, 2019.


Assuntos
Membros Artificiais , Nervos Periféricos/fisiologia , Membro Fantasma/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Humanos
6.
J Neurophysiol ; 116(1): 51-60, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27052583

RESUMO

Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee.


Assuntos
Estimulação Elétrica , Gânglios Espinais/fisiologia , Extremidade Inferior/fisiologia , Neurônios Aferentes/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Gatos , Estimulação Elétrica/métodos , Eletrodos Implantados , Nervo Femoral/fisiologia , Isoflurano/farmacologia , Vértebras Lombares , Masculino , Microeletrodos , Nervo Fibular/fisiologia , Nervo Isquiático/fisiologia
7.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405798

RESUMO

Regaining sensory feedback is pivotal for people living with limb amputation. Electrical stimulation of sensory fibers in peripheral nerves has been shown to restore focal percepts in the missing limb. However, conventional rectangular current pulses induce sensations often described as unnatural. This is likely due to the synchronous and periodic nature of activity evoked by these pulses. Here we introduce a fast-oscillating amplitude-modulated sinusoidal (FAMS) stimulation waveform that desynchronizes evoked neural activity. We used a computational model to show that sinusoidal waveforms evoke asynchronous and irregular firing and that firing patterns are frequency dependent. We designed the FAMS waveform to leverage both low- and high-frequency effects and found that membrane non-linearities enhance neuron-specific differences when exposed to FAMS. We implemented this waveform in a feline model of peripheral nerve stimulation and demonstrated that FAMS-evoked activity is more asynchronous than activity evoked by rectangular pulses, while being easily controllable with simple stimulation parameters. These results represent an important step towards biomimetic stimulation strategies useful for clinical applications to restore sensory feedback.

8.
Neurogastroenterol Motil ; 36(3): e14749, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316631

RESUMO

BACKGROUND: Gastric myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, and studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the signal power of gastric myoelectric recordings. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.


Assuntos
Anestesia , Isoflurano , Animais , Isoflurano/farmacologia , Furões , Estômago , Eletrodos , Complexo Mioelétrico Migratório
9.
J Neural Eng ; 21(2)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38502956

RESUMO

Objective.Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated Platinum/Iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, it is important to note that the effectiveness of stimulation through TES relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures.Approach.We employed a hybrid computational modeling approach to analyze the impact of Injectrode system design parameters on charge delivery and neural response to stimulation. We constructed multiple finite element method models of DRG stimulation, followed by the implementation of multi-compartment models of DRG neurons. By calculating potential distribution during monopolar stimulation, we simulated neural responses using various parameters based on prior acute experiments. Additionally, we developed a canonical monopolar stimulation and full-scale model of bipolar bilateral L5 DRG stimulation, allowing us to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds.Main results.Our findings were in accordance with acute experimental measurements and indicate that the minimally invasive Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity.Significance.The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aßactivation from the undesired Aδ-fiber activation.


Assuntos
Gânglios Espinais , Neurônios , Humanos , Gânglios Espinais/fisiologia , Dor , Estimulação Elétrica , Simulação por Computador
10.
J Neuroeng Rehabil ; 10: 25, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23442372

RESUMO

BACKGROUND: Multi-contact stimulating electrodes are gaining acceptance as a means for interfacing with the peripheral nervous system. These electrodes can potentially activate many independent populations of motor units within a single peripheral nerve, but quantifying their recruitment properties and the overlap in stimulation between contacts is difficult and time consuming. Further, current methods for quantifying overlap between contacts are ambiguous and can lead to suboptimal selective stimulation parameters. This study describes a novel method for optimizing stimulation parameters for multi-contact peripheral stimulating electrodes to produce strong, selective muscle contractions. The method is tested with four-contact spiral nerve-cuff electrodes implanted on bilateral femoral nerves of two individuals with spinal cord injury, but it is designed to be extendable to other electrode technologies with higher densities of contacts. METHODS: To optimize selective stimulation parameters for multi-contact electrodes, first, recruitment and overlap are characterized for all contacts within an electrode. Recruitment is measured with the twitch response to single stimulus pulses, and overlap between pairs of contacts is quantified by the deviation in their combined response from linear addition of individual responses. Simple mathematical models are fit to recruitment and overlap data, and a cost function is defined to maximize recruitment and minimize overlap between all contacts. RESULTS: Results are presented for four-contact nerve-cuff electrodes stimulating bilateral femoral nerves of two human subjects with spinal cord injury. Knee extension moments between 11.6 and 43.2 Nm were achieved with selective stimulation through multiple contacts of each nerve-cuff with less than 10% overlap between pairs of contacts. The overlap in stimulation measured in response to selective stimulation parameters was stable at multiple repeated time points after implantation. CONCLUSIONS: These results suggest that the method described here can provide an automated means of determining stimulus parameters to achieve strong muscle contractions via selective stimulation through multi-contact peripheral nerve electrodes.


Assuntos
Estimulação Elétrica/métodos , Eletrodos Implantados , Algoritmos , Nervo Femoral/fisiologia , Humanos , Articulações/fisiologia , Joelho/inervação , Joelho/fisiologia , Modelos Estatísticos , Neurônios Motores/fisiologia , Movimento/fisiologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Sistema Nervoso Periférico/fisiologia , Recrutamento Neurofisiológico/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-37860289

RESUMO

Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.

12.
Assist Technol ; 35(3): 258-270, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982647

RESUMO

Existing prosthetic technologies for people with upper limb amputation are being adopted at moderate rates. Once fitted for these devices, many upper limb amputees report not using them regularly or at all. The primary aim of this study was to solicit feedback about prosthetic technology and important device design criteria from amputees, clinicians, and device regulators. We compare these perspectives to identify common or divergent priorities. Twenty-one adults with upper limb loss, 35 clinicians, and 3 regulators completed a survey on existing prosthetic technologies and a conceptual sensorimotor prosthesis driven by implanted myoelectric electrodes with sensory feedback via spinal root stimulation. The survey included questions from the Trinity Amputation and Prosthesis Experience Scale, the Disabilities of the Arm, Shoulder, and Hand, and novel questions about technology acceptance and neuroprosthetic design. User and clinician ratings of satisfaction with existing devices were similar. Amputees were most accepting of the proposed sensorimotor prosthesis (75.5% vs clinicians (68.8%), regulators (67.8%)). Stakeholders valued user-centered outcomes like individualized task goals, improved quality of life, device reliability, and user safety; regulators emphasized these last two. The results of this study provide insight into amputee, clinician, and regulator priorities to inform future upper-limb prosthetic design and clinical trial protocol development.


Assuntos
Amputados , Membros Artificiais , Adulto , Humanos , Qualidade de Vida , Reprodutibilidade dos Testes , Estudos Prospectivos , Extremidade Superior/cirurgia , Desenho de Prótese
13.
PLoS One ; 18(7): e0289076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498882

RESUMO

Functional and motility-related gastrointestinal (GI) disorders affect nearly 40% percent of the population. Disturbances of GI myoelectric activity have been proposed to play a significant role in these disorders. A significant barrier to usage of these signals in diagnosis and treatment is the lack of consistent relationships between GI myoelectric features and function. A potential cause of this issue is the use of arbitrary classification criteria, such as percentage of power in tachygastric and bradygastric frequency bands. Here we applied automatic feature extraction using a deep neural network architecture on GI myoelectric signals from free-moving ferrets. For each animal, we recorded during baseline control and feeding conditions lasting for 1 h. Data were trained on a 1-dimensional residual convolutional network, followed by a fully connected layer, with a decision based on a sigmoidal output. For this 2-class problem, accuracy was 90%, sensitivity (feeding detection) was 90%, and specificity (baseline detection) was 89%. By comparison, approaches using hand-crafted features (e.g., SVM, random forest, and logistic regression) produced an accuracy from 54% to 82%, sensitivity from 46% to 84% and specificity from 66% to 80%. These results suggest that automatic feature extraction and deep neural networks could be useful to assess GI function for comparing baseline to an active functional GI state, such as feeding. In future testing, the current approach could be applied to determine normal and disease-related GI myoelectric patterns to diagnosis and assess patients with GI disease.


Assuntos
Furões , Redes Neurais de Computação , Animais , Trato Gastrointestinal , Algoritmo Florestas Aleatórias
14.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36865110

RESUMO

BACKGROUND: Gastrointestinal myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and also explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the amplitude of gastric myoelectric. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.

15.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790562

RESUMO

Objective: Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated platinum/iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, effectiveness of stimulation relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures. Approach: We employed a hybrid computational modeling approach to analyze the impact of the Injectrode system design parameters on charge delivery and the neural response to stimulation. We constructed multiple finite element method models of DRG stimulation and multi-compartment models of DRG neurons. We simulated the neural responses using parameters based on prior acute preclinical experiments. Additionally, we developed multiple human-scale computational models of DRG stimulation to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds. Main results: Our findings were in accordance with acute experimental measurements and indicated that the Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity. Significance: The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aß activation from the undesired Aδ-fiber activation.

16.
Nat Med ; 29(3): 689-699, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807682

RESUMO

Cerebral strokes can disrupt descending commands from motor cortical areas to the spinal cord, which can result in permanent motor deficits of the arm and hand. However, below the lesion, the spinal circuits that control movement remain intact and could be targeted by neurotechnologies to restore movement. Here we report results from two participants in a first-in-human study using electrical stimulation of cervical spinal circuits to facilitate arm and hand motor control in chronic post-stroke hemiparesis ( NCT04512690 ). Participants were implanted for 29 d with two linear leads in the dorsolateral epidural space targeting spinal roots C3 to T1 to increase excitation of arm and hand motoneurons. We found that continuous stimulation through selected contacts improved strength (for example, grip force +40% SCS01; +108% SCS02), kinematics (for example, +30% to +40% speed) and functional movements, thereby enabling participants to perform movements that they could not perform without spinal cord stimulation. Both participants retained some of these improvements even without stimulation and no serious adverse events were reported. While we cannot conclusively evaluate safety and efficacy from two participants, our data provide promising, albeit preliminary, evidence that spinal cord stimulation could be an assistive as well as a restorative approach for upper-limb recovery after stroke.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Acidente Vascular Cerebral , Humanos , Paresia/etiologia , Paresia/terapia , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Extremidade Superior , Feminino , Adulto , Pessoa de Meia-Idade
17.
medRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076797

RESUMO

Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.

18.
Nat Biomed Eng ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097809

RESUMO

Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.

19.
Percept Mot Skills ; 129(1): 47-62, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913749

RESUMO

The underlying mechanism(s) of the Bilateral Deficit (BLD) phenomenon is without consensus. Methodological inconsistencies across prior works may be an important source of equivocal results and interpretations. Based on repeatability problems with the BLD measure and maximal force definition, the presence or absence of the BLD phenomenon is altered, shifting conclusions of its mechanistic cause. Our purpose in this study was to examine methodological inconsistencies in applying the BLD measure to establish optimal methods for evaluating the underlying mechanism. Eleven healthy participants engaged in one familiarity and five test sessions, completing bilateral and unilateral elbow maximal voluntary isometric contractions. We defined maximal force by averaged and absolute peak and plateau values. BLD was evident if the bilateral index (BI), the ratio of the bilateral over summed unilateral forces, was statistically different from zero. We addressed interclass correlations (ICC), Chronbach's α, standard error of the mean, and minimal detectable change between and within sessions for all force measures and BI. We evaluated all combinations of sessions (i.e., 1-2, 3-5, 5-6) and maximal forces to establish the optimal number of sessions to achieve reliability. BLD was present for test sessions, but not for familiarization. All measures of maximal force were highly reliable between and within sessions (ICC(2,1) ≥ .895). BI was only considered significantly reliable in sessions 3-5 (p < .027), defined by absolute and average plateau forces, but reliability was still quantifiably poor (absolute: ICC(2,1) = .392; average: ICC(2,1) = .375). These results demonstrate that high force reliability within and between sessions does not translate to stable and reliable BI, potentially exposing the lack of any defined BLD mechanism.


Assuntos
Cotovelo , Músculo Esquelético , Eletromiografia , Humanos , Contração Isométrica , Reprodutibilidade dos Testes
20.
J Neural Eng ; 19(6)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36343359

RESUMO

Objective.Epidural spinal cord stimulation (SCS) is a potential intervention to improve limb and autonomic functions, with lumbar stimulation improving locomotion and thoracic stimulation regulating blood pressure. Here, we asked whether sacral SCS could be used to target the lower urinary tract (LUT) and used a high-density epidural electrode array to test whether individual electrodes could selectively recruit LUT nerves.Approach. We placed a high-density epidural SCS array on the dorsal surface of the sacral spinal cord and cauda equina of anesthetized cats and recorded the stimulation-evoked activity from nerve cuffs on the pelvic, pudendal and sciatic nerves.Main results. Here we show that sacral SCS evokes responses in nerves innervating the bladder and urethra and that these nerves can be activated selectively. Sacral SCS always recruited the pelvic and pudendal nerves and selectively recruited both of these nerves in all but one animal. Individual branches of the pudendal nerve were always recruited as well. Electrodes that selectively recruited specific peripheral nerves were spatially clustered on the arrays, suggesting anatomically organized sensory pathways.Significance.This selective recruitment demonstrates a mechanism to directly modulate bladder and urethral function through known reflex pathways, which could be used to restore bladder and urethral function after injury or disease.


Assuntos
Nervo Pudendo , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Animais , Bexiga Urinária/inervação , Uretra/inervação , Uretra/fisiologia , Reflexo/fisiologia , Medula Espinal , Estimulação Elétrica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA