Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(9-10): 658-676, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888562

RESUMO

The transcription cycle of RNA polymerase II (RNAPII) is governed at multiple points by opposing actions of cyclin-dependent kinases (CDKs) and protein phosphatases, in a process with similarities to the cell division cycle. While important roles of the kinases have been established, phosphatases have emerged more slowly as key players in transcription, and large gaps remain in understanding of their precise functions and targets. Much of the earlier work focused on the roles and regulation of sui generis and often atypical phosphatases-FCP1, Rtr1/RPAP2, and SSU72-with seemingly dedicated functions in RNAPII transcription. Decisive roles in the transcription cycle have now been uncovered for members of the major phosphoprotein phosphatase (PPP) family, including PP1, PP2A, and PP4-abundant enzymes with pleiotropic roles in cellular signaling pathways. These phosphatases appear to act principally at the transitions between transcription cycle phases, ensuring fine control of elongation and termination. Much is still unknown, however, about the division of labor among the PPP family members, and their possible regulation by or of the transcriptional kinases. CDKs active in transcription have recently drawn attention as potential therapeutic targets in cancer and other diseases, raising the prospect that the phosphatases might also present opportunities for new drug development. Here we review the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/genética , Transcrição Gênica/genética , Animais , Sistemas de Liberação de Medicamentos , Humanos , Fosfoproteínas Fosfatases/genética
2.
Mol Cell ; 77(6): 1157-1158, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200795

RESUMO

In this issue of Molecular Cell, Cossa et al. (2020) uncover the basis for a dependency of tumor cells with deregulated MYC on the kinase NUAK1, which acts through PP1 and PNUTS to ensure that splicing keeps up with MYC-driven transcription.


Assuntos
Spliceossomos , Proteína Fosfatase 1
3.
Nature ; 558(7710): 460-464, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899453

RESUMO

The end of the RNA polymerase II (Pol II) transcription cycle is strictly regulated to prevent interference between neighbouring genes and to safeguard transcriptome integrity 1 . The accumulation of Pol II downstream of the cleavage and polyadenylation signal can facilitate the recruitment of factors involved in mRNA 3'-end formation and termination 2 , but how this sequence is initiated remains unclear. In a chemical-genetic screen, human protein phosphatase 1 (PP1) isoforms were identified as substrates of positive transcription elongation factor b (P-TEFb), also known as the cyclin-dependent kinase 9 (Cdk9)-cyclin T1 (CycT1) complex 3 . Here we show that Cdk9 and PP1 govern phosphorylation of the conserved elongation factor Spt5 in the fission yeast Schizosaccharomyces pombe. Cdk9 phosphorylates both Spt5 and a negative regulatory site on the PP1 isoform Dis2 4 . Sites targeted by Cdk9 in the Spt5 carboxy-terminal domain can be dephosphorylated by Dis2 in vitro, and dis2 mutations retard Spt5 dephosphorylation after inhibition of Cdk9 in vivo. Chromatin immunoprecipitation and sequencing analysis indicates that Spt5 is dephosphorylated as transcription complexes traverse the cleavage and polyadenylation signal, concomitant with the accumulation of Pol II phosphorylated at residue Ser2 of the carboxy-terminal domain consensus heptad repeat 5 . A conditionally lethal Dis2-inactivating mutation attenuates the drop in Spt5 phosphorylation on chromatin, promotes transcription beyond the normal termination zone (as detected by precision run-on transcription and sequencing 6 ) and is genetically suppressed by the ablation of Cdk9 target sites in Spt5. These results suggest that the transition of Pol II from elongation to termination coincides with a Dis2-dependent reversal of Cdk9 signalling-a switch that is analogous to a Cdk1-PP1 circuit that controls mitotic progression 4 .


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Elongação da Transcrição Genética , Terminação da Transcrição Genética , Sequência de Aminoácidos , Quinase 9 Dependente de Ciclina/química , Humanos , Mitose , Fosfoproteínas Fosfatases/química , Fosforilação , RNA Polimerase II/química , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Transdução de Sinais , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
4.
Genes Dev ; 30(1): 117-31, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26728557

RESUMO

The transcription cycle of RNA polymerase II (Pol II) is regulated at discrete transition points by cyclin-dependent kinases (CDKs). Positive transcription elongation factor b (P-TEFb), a complex of Cdk9 and cyclin T1, promotes release of paused Pol II into elongation, but the precise mechanisms and targets of Cdk9 action remain largely unknown. Here, by a chemical genetic strategy, we identified ∼ 100 putative substrates of human P-TEFb, which were enriched for proteins implicated in transcription and RNA catabolism. Among the RNA processing factors phosphorylated by Cdk9 was the 5'-to-3' "torpedo" exoribonuclease Xrn2, required in transcription termination by Pol II, which we validated as a bona fide P-TEFb substrate in vivo and in vitro. Phosphorylation by Cdk9 or phosphomimetic substitution of its target residue, Thr439, enhanced enzymatic activity of Xrn2 on synthetic substrates in vitro. Conversely, inhibition or depletion of Cdk9 or mutation of Xrn2-Thr439 to a nonphosphorylatable Ala residue caused phenotypes consistent with inefficient termination in human cells: impaired Xrn2 chromatin localization and increased readthrough transcription of endogenous genes. Therefore, in addition to its role in elongation, P-TEFb regulates termination by promoting chromatin recruitment and activation of a cotranscriptional RNA processing enzyme, Xrn2.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação da Expressão Gênica/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Cromatina/metabolismo , Ativação Enzimática/genética , Testes Genéticos , Células HCT116 , Humanos , Fosforilação , Ligação Proteica
5.
Nat Chem Biol ; 16(7): 716-724, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572259

RESUMO

Largely non-overlapping sets of cyclin-dependent kinases (CDKs) regulate cell division and RNA polymerase II (Pol II)-dependent transcription. Here we review the molecular mechanisms by which specific CDKs are thought to act at discrete steps in the transcription cycle and describe the recent emergence of transcriptional CDKs as promising drug targets in cancer. We emphasize recent advances in understanding the transcriptional CDK network that were facilitated by development and deployment of small-molecule inhibitors with increased selectivity for individual CDKs. Unexpectedly, several of these compounds have also shown selectivity in killing cancer cells, despite the seemingly universal involvement of their target CDKs during transcription in all cells. Finally, we describe remaining and emerging challenges in defining functions of individual CDKs in transcription and co-transcriptional processes and in leveraging CDK inhibition for therapeutic purposes.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , RNA Polimerase II/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/química , Proteólise , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Transcrição Gênica
6.
Nucleic Acids Res ; 48(13): 7154-7168, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32496538

RESUMO

Mono-ubiquitylation of histone H2B (H2Bub1) and phosphorylation of elongation factor Spt5 by cyclin-dependent kinase 9 (Cdk9) occur during transcription by RNA polymerase II (RNAPII), and are mutually dependent in fission yeast. It remained unclear whether Cdk9 and H2Bub1 cooperate to regulate the expression of individual genes. Here, we show that Cdk9 inhibition or H2Bub1 loss induces intragenic antisense transcription of ∼10% of fission yeast genes, with each perturbation affecting largely distinct subsets; ablation of both pathways de-represses antisense transcription of over half the genome. H2Bub1 and phospho-Spt5 have similar genome-wide distributions; both modifications are enriched, and directly proportional to each other, in coding regions, and decrease abruptly around the cleavage and polyadenylation signal (CPS). Cdk9-dependence of antisense suppression at specific genes correlates with high H2Bub1 occupancy, and with promoter-proximal RNAPII pausing. Genetic interactions link Cdk9, H2Bub1 and the histone deacetylase Clr6-CII, while combined Cdk9 inhibition and H2Bub1 loss impair Clr6-CII recruitment to chromatin and lead to decreased occupancy and increased acetylation of histones within gene coding regions. These results uncover novel interactions between co-transcriptional histone modification pathways, which link regulation of RNAPII transcription elongation to suppression of aberrant initiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Elongação da Transcrição Genética , Fosforilação , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
7.
Curr Genet ; 67(5): 695-705, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34089069

RESUMO

Co-transcriptional histone modifications are a ubiquitous feature of RNA polymerase II (RNAPII) transcription, with profound but incompletely understood effects on gene expression. Unlike the covalent marks found at promoters, which are thought to be instructive for transcriptional activation, these modifications occur in gene bodies as a result of transcription, which has made elucidation of their functions challenging. Here we review recent insights into the regulation and roles of two such modifications: monoubiquitylation of histone H2B at lysine 120 (H2Bub1) and methylation of histone H3 at lysine 36 (H3K36me). Both H2Bub1 and H3K36me are enriched in the coding regions of transcribed genes, with highly overlapping distributions, but they were thought to work largely independently. We highlight our recent demonstration that, as was previously shown for H3K36me, H2Bub1 signals to the histone deacetylase (HDAC) complex Rpd3S/Clr6-CII, and that Rpd3S/Clr6-CII and H2Bub1 function in the same pathway to repress aberrant antisense transcription initiating within gene coding regions. Moreover, both of these histone modification pathways are influenced by protein phosphorylation catalyzed by the cyclin-dependent kinases (CDKs) that regulate RNAPII elongation, chiefly Cdk9. Therefore, H2Bub1 and H3K36me are more tightly linked than previously thought, sharing both upstream regulatory inputs and downstream effectors. Moreover, these newfound connections suggest extensive, bidirectional signaling between RNAPII elongation complexes and chromatin-modifying enzymes, which helps to determine transcriptional outputs and should be a focus for future investigation.


Assuntos
Código das Histonas , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Ubiquitinação
8.
Mol Cell ; 50(2): 250-60, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622515

RESUMO

Eukaryotic cell division is controlled by cyclin-dependent kinases (CDKs), which require phosphorylation by a CDK-activating kinase (CAK) for full activity. Chemical genetics uncovered requirements for the metazoan CAK Cdk7 in determining cyclin specificity and activation order of Cdk2 and Cdk1 during S and G2 phases. It was unknown if Cdk7 also activates Cdk4 and Cdk6 to promote passage of the restriction (R) point, when continued cell-cycle progression becomes mitogen independent, or if CDK-activating phosphorylation regulates G1 progression. Here we show that Cdk7 is a Cdk4- and Cdk6-activating kinase in human cells, required to maintain activity, not just to establish the active state, as is the case for Cdk1 and Cdk2. Activating phosphorylation of Cdk7 rises concurrently with that of Cdk4 as cells exit quiescence and accelerates Cdk4 activation in vitro. Therefore, mitogen signaling drives a CDK-activation cascade during G1 progression, and CAK might be rate-limiting for R point passage.


Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fase G1 , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Proliferação de Células , Ciclina D/metabolismo , Ciclina H/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Ativação Enzimática , Epistasia Genética , Células HCT116 , Humanos , Fosforilação , Proteína do Retinoblastoma/metabolismo , Fase S , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Mol Cell ; 42(5): 624-36, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21658603

RESUMO

Multiple cyclin-dependent kinases (CDKs) control eukaryotic cell division, but assigning specific functions to individual CDKs remains a challenge. During the mammalian cell cycle, Cdk2 forms active complexes before Cdk1, but lack of Cdk2 protein does not block cell-cycle progression. To detect requirements and define functions for Cdk2 activity in human cells when normal expression levels are preserved, and nonphysiologic compensation by other CDKs is prevented, we replaced the wild-type kinase with a version sensitized to specific inhibition by bulky adenine analogs. The sensitizing mutation also impaired a noncatalytic function of Cdk2 in restricting assembly of cyclin A with Cdk1, but this defect could be corrected by both inhibitory and noninhibitory analogs. This allowed either chemical rescue or selective antagonism of Cdk2 activity in vivo, to uncover a requirement in cell proliferation, and nonredundant, rate-limiting roles in restriction point passage and S phase entry.


Assuntos
Proliferação de Células , Quinase 2 Dependente de Ciclina/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/genética , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Humanos , Estrutura Terciária de Proteína , Fase S/efeitos dos fármacos , Fase S/fisiologia
10.
Mol Cell ; 33(6): 738-51, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19328067

RESUMO

Cyclin-dependent kinases (CDKs) are subunits of transcription factor (TF) IIH and positive transcription elongation factor b (P-TEFb). To define their functions, we mutated the TFIIH-associated kinase Mcs6 and P-TEFb homologs Cdk9 and Lsk1 of fission yeast, making them sensitive to inhibition by bulky purine analogs. Selective inhibition of Mcs6 or Cdk9 blocks cell division, alters RNA polymerase (Pol) II carboxyl-terminal domain (CTD) phosphorylation, and represses specific, overlapping subsets of transcripts. At a common target gene, both CDKs must be active for normal Pol II occupancy, and Spt5-a CDK substrate and regulator of elongation-accumulates disproportionately to Pol II when either kinase is inhibited. In contrast, Mcs6 activity is sufficient-and necessary-to recruit the Cdk9/Pcm1 (mRNA cap methyltransferase) complex. In vitro, phosphorylation of the CTD by Mcs6 stimulates subsequent phosphorylation by Cdk9. We propose that TFIIH primes the CTD and promotes recruitment of P-TEFb/Pcm1, serving to couple elongation and capping of select pre-mRNAs.


Assuntos
Fator B de Elongação Transcricional Positiva/genética , Capuzes de RNA/genética , Schizosaccharomyces/metabolismo , Fator de Transcrição TFIIH/genética , Transcrição Gênica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
11.
Nucleic Acids Res ; 43(20): 9766-75, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26275777

RESUMO

Transcription by RNA polymerase II (RNAPII) is accompanied by a conserved pattern of histone modifications that plays important roles in regulating gene expression. The establishment of this pattern requires phosphorylation of both Rpb1 (the largest RNAPII subunit) and the elongation factor Spt5 on their respective C-terminal domains (CTDs). Here we interrogated the roles of individual Rpb1 and Spt5 CTD phospho-sites in directing co-transcriptional histone modifications in the fission yeast Schizosaccharomyces pombe. Steady-state levels of methylation at histone H3 lysines 4 (H3K4me) and 36 (H3K36me) were sensitive to multiple mutations of the Rpb1 CTD repeat motif (Y1S2P3T4S5P6S7). Ablation of the Spt5 CTD phospho-site Thr1 reduced H3K4me levels but had minimal effects on H3K36me. Nonetheless, Spt5 CTD mutations potentiated the effects of Rpb1 CTD mutations on H3K36me, suggesting overlapping functions. Phosphorylation of Rpb1 Ser2 by the Cdk12 orthologue Lsk1 positively regulated H3K36me but negatively regulated H3K4me. H3K36me and histone H2B monoubiquitylation required Rpb1 Ser5 but were maintained upon inactivation of Mcs6/Cdk7, the major kinase for Rpb1 Ser5 in vivo, implicating another Ser5 kinase in these regulatory pathways. Our results elaborate the CTD 'code' for co-transcriptional histone modifications.


Assuntos
Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Metilação , Mutação , Fosforilação , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Serina/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Quinase Ativadora de Quinase Dependente de Ciclina
12.
Mol Cell ; 32(5): 662-72, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19061641

RESUMO

In metazoans, different cyclin-dependent kinases (CDKs) bind preferred cyclin partners to coordinate cell division. Here, we investigate these preferences in human cells and show that cyclin A assembles with Cdk1 only after complex formation with Cdk2 reaches a plateau during late S and G2 phases. To understand the basis for Cdk2's competitive advantage, despite Cdk1's greater abundance, we dissect their activation pathways by chemical genetics. Cdk1 and Cdk2 are activated by kinetically distinct mechanisms, even though they share the same CDK-activating kinase (CAK), Cdk7. We recapitulate cyclin A's selectivity for Cdk2 in extracts and override it with a yeast CAK that phosphorylates monomeric Cdk1, redirecting Cdk1 into a pathway normally restricted to Cdk2. Conversely, upon Cdk7 inhibition in vivo, cyclin B, which normally binds Cdk1 nearly exclusively, is diverted to Cdk2. Therefore, differential ordering of common activation steps promotes CDK-cyclin specificity, with Cdk7 acting catalytically to enforce fidelity.


Assuntos
Proteína Quinase CDC2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Animais , Ciclo Celular , Extratos Celulares , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Células HCT116 , Humanos , Modelos Biológicos , Fosfatos/metabolismo , Fosforilação , Fosfotreonina/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Quinase Ativadora de Quinase Dependente de Ciclina
13.
PLoS Genet ; 9(12): e1004029, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385927

RESUMO

Cyclin-dependent kinase 9 (Cdk9) promotes elongation by RNA polymerase II (RNAPII), mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF) complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.


Assuntos
Quinase 9 Dependente de Ciclina/genética , RNA Mensageiro/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica , Sítios de Ligação/genética , Cromatina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Histonas/genética , Fosforilação , RNA Mensageiro/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(17): E1019-27, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22474407

RESUMO

A family of conserved serine/threonine kinases known as cyclin-dependent kinases (CDKs) drives orderly cell cycle progression in mammalian cells. Prior studies have suggested that CDK2 regulates S-phase entry and progression, and frequently shows increased activity in a wide spectrum of human tumors. Genetic KO/knockdown approaches, however, have suggested that lack of CDK2 protein does not prevent cellular proliferation, both during somatic development in mice as well as in human cancer cell lines. Here, we use an alternative, chemical-genetic approach to achieve specific inhibition of CDK2 kinase activity in cells. We directly compare small-molecule inhibition of CDK2 kinase activity with siRNA knockdown and show that small-molecule inhibition results in marked defects in proliferation of nontransformed cells, whereas siRNA knockdown does not, highlighting the differences between these two approaches. In addition, CDK2 inhibition drastically diminishes anchorage-independent growth of human cancer cells and cells transformed with various oncogenes. Our results establish that CDK2 activity is necessary for normal mammalian cell cycle progression and suggest that it might be a useful therapeutic target for treating cancer.


Assuntos
Transformação Celular Neoplásica , Quinase 2 Dependente de Ciclina/fisiologia , Oncogenes , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , RNA Interferente Pequeno
15.
PLoS Genet ; 8(8): e1002822, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876190

RESUMO

Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a novel function of a conserved, co-transcriptional histone modification.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Histonas/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Elongação da Transcrição Genética , Cromatina/genética , Cromatina/metabolismo , Quinase 9 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Histonas/genética , Mutação , Fosforilação , Fator B de Elongação Transcricional Positiva/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
16.
PLoS Genet ; 8(8): e1002935, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22927831

RESUMO

The cyclin-dependent kinases (CDKs) that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity. In mammals, Cdk2 is active throughout S and G2 phases, but Cdk2 protein is dispensable for survival, owing to compensation by other CDKs. That plasticity obscured a requirement for Cdk2 activity in proliferation of human cells, which we uncovered by replacement of wild-type Cdk2 with a mutant version sensitized to inhibition by bulky adenine analogs. Here we show that transient, selective inhibition of analog-sensitive (AS) Cdk2 after exposure to ionizing radiation (IR) enhances cell-killing. In extracts supplemented with an ATP analog used preferentially by AS kinases, Cdk2(as) phosphorylated the Nijmegen Breakage Syndrome gene product Nbs1-a component of the conserved Mre11-Rad50-Nbs1 complex required for normal DNA damage repair and checkpoint signaling-dependent on a consensus CDK recognition site at Ser432. In vivo, selective inhibition of Cdk2 delayed and diminished Nbs1-Ser432 phosphorylation during S phase, and mutation of Ser432 to Ala or Asp increased IR-sensitivity. Therefore, by chemical genetics, we uncovered both a non-redundant requirement for Cdk2 activity in response to DNA damage and a specific target of Cdk2 within the DNA repair machinery.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Dano ao DNA/efeitos da radiação , Proteínas Nucleares/metabolismo , Radiação Ionizante , Hidrolases Anidrido Ácido , Ciclo Celular , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11 , Fosforilação
17.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405971

RESUMO

Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates-the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.

18.
Biochem Soc Trans ; 41(6): 1660-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256271

RESUMO

CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Genéticos , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Transcrição Gênica , Ciclo Celular/genética , Schizosaccharomyces/citologia
19.
Science ; 380(6642): 240-241, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37079669
20.
Nat Struct Mol Biol ; 14(6): 548-55, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17529993

RESUMO

The histone chaperone SET is required for transcription of chromatin templates by RNA polymerase Pol II (Pol II) in vitro. Here we uncover a positive role for SET in dislodging DEK and PARP1, which restrict access to chromatin in the absence of SET and the PARP1 substrate NAD(+). SET binds chromatin, dissociating DEK and PARP1 to allow transcription in the absence of NAD(+). In the absence of SET, depletion of DEK restores chromatin accessibility to endonuclease but does not permit Mediator recruitment or transcription. In the presence of NAD(+), PARP1 poly(ADP-ribosyl)ates and evicts DEK (and itself) from chromatin to permit Mediator loading and transcription independent of SET. An artificial DEK variant resistant to SET and PARP1 represses transcription, indicating a requirement for DEK removal. Therefore, SET, DEK and PARP1 constitute a network governing access to chromatin by the transcription machinery.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Oncogênicas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Proteínas de Ligação a DNA , Células HeLa , Chaperonas de Histonas , Humanos , Poli(ADP-Ribose) Polimerase-1 , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II/metabolismo , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA