Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 601(7894): 542-548, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082418

RESUMO

Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.

2.
Phys Rev Lett ; 131(6): 065101, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625041

RESUMO

The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.

4.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638294

RESUMO

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

5.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

6.
Phys Rev Lett ; 124(14): 145001, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338978

RESUMO

The impact to fusion energy production due to the radiative loss from a localized mix in inertial confinement implosions using high density carbon capsule targets has been quantified. The radiative loss from the localized mix and local cooling of the reacting plasma conditions was quantified using neutron and x-ray images to reconstruct the hot spot conditions during thermonuclear burn. Such localized features arise from ablator material that is injected into the hot spot from the Rayleigh-Taylor growth of capsule surface perturbations, particularly the tube used to fill the capsule with deuterium and tritium fuel. Observations, consistent with analytic estimates, show the degradation to fusion energy production to be linearly proportional to the fraction of the total emission that is associated with injected ablator material and that this radiative loss has been the primary source of variations, of up to 1.6 times, in observed fusion energy production. Reducing the fill tube diameter has increased the ignition metric χ_{no α} from 0.49 to 0.72, 92% of that required to achieve a burning hot spot.

7.
Phys Rev Lett ; 125(15): 155003, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095614

RESUMO

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

8.
Phys Rev Lett ; 121(13): 135001, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312055

RESUMO

To reach the pressures and densities required for ignition, it may be necessary to develop an approach to design that makes it easier for simulations to guide experiments. Here, we report on a new short-pulse inertial confinement fusion platform that is specifically designed to be more predictable. The platform has demonstrated 99%+0.5% laser coupling into the hohlraum, high implosion velocity (411 km/s), high hotspot pressure (220+60 Gbar), and high cold fuel areal density compression ratio (>400), while maintaining controlled implosion symmetry, providing a promising new physics platform to study ignition physics.

9.
Phys Rev Lett ; 120(24): 245003, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956968

RESUMO

A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km/s resulting in a peak kinetic energy of ∼21 kJ, which once stagnated produced a total DT neutron yield of 1.9×10^{16} (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3 g/cm^{2}) and stagnation pressure (∼360 Gbar) never before achieved in a laboratory experiment.

10.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382681

RESUMO

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

11.
Phys Rev Lett ; 114(17): 175001, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978240

RESUMO

Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α∼3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10(15) neutrons, with 20% calculated alpha heating at convergence ∼27×.

12.
Phys Rev Lett ; 115(5): 055001, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274424

RESUMO

We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

13.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910132

RESUMO

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

14.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39235294

RESUMO

X-ray radiography is a ubiquitous diagnostic technique in high energy density (HED) physics, with point projection backlighting commonly used for characterizing static and dynamic objects at high spatial and temporal resolutions. These are typically constrained in attainable resolution by their decrease in brightness, which is a limiting factor for high-Z HED experiments, such as double-shell implosions at the National Ignition Facility (NIF) requiring MeV-scale bremsstrahlung sources at high (<50µm) resolution. Coded source imaging is a technique using multiple point-projection sources to produce multiple overlapping radiographs, which are then decoded as a function of the source positions in a process akin to coded aperture imaging. Here, we discuss a new approach to coded source generation using multiple individual small-diameter wire targets within the footprint of a defocused large-scale a0 ≃ 1 laser to produce an MeV-scale high-resolution bright combined source for x-ray radiography. We outline optimal source designs with NIF-Advanced Radiography Capability as the case study, highlight the need for iterative reconstruction decoding, and discuss the research required to demonstrate a robust physical proof-of-concept.

15.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436450

RESUMO

Magnetized Liner Inertial Fusion experiments have been performed at the Z facility at Sandia National Laboratories. These experiments use deuterium fuel, which produces 2.45 MeV neutrons on reaching thermonuclear conditions. To study the spatial structure of neutron production, the one-dimensional imager of neutrons diagnostic was fielded to record axial resolved neutron images. In this diagnostic, neutrons passing through a rolled edge aperture form an image on a CR-39-based solid state nuclear track detector. Here, we present a modified generalized expectation-maximization algorithm to reconstruct an axial neutron emission profile of the stagnated fusion plasma. We validate the approach by comparing the reconstructed neutron emission profile to an x-ray emission profile provided by a time-integrated pinhole camera.

16.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958513

RESUMO

3D asymmetries are major degradation mechanisms in inertial-confinement fusion implosions at the National Ignition Facility (NIF). These asymmetries can be diagnosed and reconstructed with the neutron imaging system (NIS) on three lines of sight around the NIF target chamber. Conventional tomographic reconstructions are used to reconstruct the 3D morphology of the implosion using NIS [Volegov et al., J. Appl. Phys. 127, 083301 (2020)], but the problem is ill-posed with only three imaging lines of sight. Asymmetries can also be diagnosed with the real-time neutron activation diagnostics (RTNAD) and the neutron time-of-flight (nToF) suite. Since the NIS, RTNAD, and nToF each sample a different part of the implosion using different physical principles, we propose that it is possible to overcome the limitations of too few imaging lines of sight by performing 3D reconstructions that combine information from all three heterogeneous data sources. This work presents a new machine learning-based reconstruction technique to do just this. By using a simple physics model and group of neural networks to map 3D morphologies to data, this technique can easily account for data of multiple different types. A simple proof-of-principle is presented, demonstrating that this technique can accurately reconstruct a hot-spot shape using synthetic primary neutron images and a hot-spot velocity vector. In particular, the hot-spot's asymmetry, quantified as spherical harmonic coefficients, is reconstructed to within ±4% of the radius in 90% of test cases. In the future, this technique will be applied to actual NIS, RTNAD, and nToF data to better understand 3D asymmetries at the NIF.

17.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39365111

RESUMO

To benchmark the accuracy of the models and improve the predictive capability of future experiments, the National Ignition Facility requires measurements of the physical conditions inside inertial confinement fusion hohlraums. The ion temperature and bulk motion velocity of the gas-filled regions of the hohlraum can be obtained by replacing the helium tamping gas in the hohlraum with deuterium-tritium (DT) gas and measuring the Doppler broadening and Doppler shift of the neutron spectrum produced by nuclear reactions in the hohlraum. To understand the spatial distribution of the neutron production inside the hohlraum, we have developed a new penumbral neutron imager with a 12 mm diameter field of view using a simple tungsten alloy spindle. We performed the first experiment using this imager on a DT gas-filled hohlraum and successfully obtained the spatial distribution of neutron production in the hohlraum plasma. We will report on the design of the spindle, characterization of the detectors, and methodology of the image reconstruction.

18.
Phys Rev E ; 109(2-2): 025203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491694

RESUMO

An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.16 MJ of total fusion yield, producing a target gain G=1.5±0.1 exceeding unity for the first time in a laboratory experiment [Phys. Rev. E 109, 025204 (2024)10.1103/PhysRevE.109.025204]. Herein we describe the experimental evidence for the increased drive on the capsule using additional laser energy and control over known degradation mechanisms, which are critical to achieving high performance. Improved fuel compression relative to previous megajoule-yield experiments is observed. Novel signatures of the ignition and burn propagation to high yield can now be studied in the laboratory for the first time.

19.
Nat Commun ; 15(1): 2975, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582938

RESUMO

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1. Analysis shows that including these three corrections alone accounts for the measured fusion performance variability in the two highest performing experimental campaigns on the NIF to within error. Here we quantify the performance sensitivity to mode-2 symmetry in the burning plasma regime and apply the results, in the form of an empirical correction to a 1D performance model. Furthermore, we find the sensitivity to mode-2 determined through a series of integrated 2D radiation hydrodynamic simulations to be consistent with the experimentally determined sensitivity only when including alpha-heating.

20.
Rev Sci Instrum ; 94(2): 021101, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859056

RESUMO

We review experimental neutron imaging of inertial confinement fusion sources, including the neutron imaging systems that have been used in our measurements at the National Ignition Facility. These systems allow measurements with 10 µm resolution for fusion deuterium-deuterium and deuterium-tritium neutron sources with mean radius up to 400 µm, including measurements of neutrons scattered to lower energy in the remaining cold fuel. These measurements are critical for understanding the fusion burn volume and the three-dimensional effects that can reduce the neutron yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA