Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 575(7781): 229-233, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666694

RESUMO

Epigenetic aberrations are widespread in cancer, yet the underlying mechanisms and causality remain poorly understood1-3. A subset of gastrointestinal stromal tumours (GISTs) lack canonical kinase mutations but instead have succinate dehydrogenase (SDH) deficiency and global DNA hyper-methylation4,5. Here, we associate this hyper-methylation with changes in genome topology that activate oncogenic programs. To investigate epigenetic alterations systematically, we mapped DNA methylation, CTCF insulators, enhancers, and chromosome topology in KIT-mutant, PDGFRA-mutant and SDH-deficient GISTs. Although these respective subtypes shared similar enhancer landscapes, we identified hundreds of putative insulators where DNA methylation replaced CTCF binding in SDH-deficient GISTs. We focused on a disrupted insulator that normally partitions a core GIST super-enhancer from the FGF4 oncogene. Recurrent loss of this insulator alters locus topology in SDH-deficient GISTs, allowing aberrant physical interaction between enhancer and oncogene. CRISPR-mediated excision of the corresponding CTCF motifs in an SDH-intact GIST model disrupted the boundary between enhancer and oncogene, and strongly upregulated FGF4 expression. We also identified a second recurrent insulator loss event near the KIT oncogene, which is also highly expressed across SDH-deficient GISTs. Finally, we established a patient-derived xenograft (PDX) from an SDH-deficient GIST that faithfully maintains the epigenetics of the parental tumour, including hypermethylation and insulator defects. This PDX model is highly sensitive to FGF receptor (FGFR) inhibition, and more so to combined FGFR and KIT inhibition, validating the functional significance of the underlying epigenetic lesions. Our study reveals how epigenetic alterations can drive oncogenic programs in the absence of canonical kinase mutations, with implications for mechanistic targeting of aberrant pathways in cancers.


Assuntos
Carcinogênese/genética , Aberrações Cromossômicas , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Oncogenes/genética , Succinato Desidrogenase/deficiência , Animais , Sistemas CRISPR-Cas/genética , Metilação de DNA , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Fator 4 de Crescimento de Fibroblastos/genética , Tumores do Estroma Gastrointestinal/enzimologia , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Succinato Desidrogenase/genética
2.
Nature ; 547(7663): 355-359, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28678782

RESUMO

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Terapia de Alvo Molecular/tendências , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Interferência de RNA , Transcrição Gênica , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 529(7584): 110-4, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26700815

RESUMO

Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Glioma/genética , Elementos Isolantes/genética , Isocitrato Desidrogenase/genética , Mutação/genética , Oncogenes/genética , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células Cultivadas , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Regulação para Baixo/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Glutaratos/metabolismo , Humanos , Elementos Isolantes/efeitos dos fármacos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Fenótipo , Ligação Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Repressoras/metabolismo , Regulação para Cima , Coesinas
4.
Biochem Soc Trans ; 48(4): 1609-1621, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32794546

RESUMO

Epigenetic processes converge on chromatin in order to direct a cell's gene expression profile. This includes both maintaining a stable cell identity, but also priming the cell for specific controlled transitions, such as differentiation or response to stimuli. In cancer, this normally tight control is often disrupted, leading to a wide scale hyper-plasticity of the epigenome and allowing stochastic gene activation and silencing, cell state transition, and potentiation of the effects of genetic lesions. Many of these epigenetic disruptions will confer a proliferative advantage to cells, allowing for a selection process to occur and leading to tumorigenesis even in the case of reversible or unstable epigenetic states. This review seeks to highlight how the fundamental epigenetic shifts in cancer contribute to tumorigenesis, and how understanding an integrated view of cancer genetics and epigenetics may more effectively guide research and treatment.


Assuntos
Carcinogênese/genética , Epigênese Genética , Seleção Genética , Metilação de DNA , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Processos Estocásticos
5.
Stem Cells ; 34(8): 2026-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145382

RESUMO

Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Evasão da Resposta Imune , Fatores Inibidores da Migração de Macrófagos/metabolismo , Células Supressoras Mieloides/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Arginase/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Glioblastoma/patologia , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/efeitos dos fármacos
6.
Stem Cells ; 32(7): 1746-58, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24737733

RESUMO

Glioblastoma (GBM) contains a self-renewing, tumorigenic cancer stem cell (CSC) population which contributes to tumor propagation and therapeutic resistance. While the tumor microenvironment is essential to CSC self-renewal, the mechanisms by which CSCs sense and respond to microenvironmental conditions are poorly understood. Scavenger receptors are a broad class of membrane receptors well characterized on immune cells and instrumental in sensing apoptotic cellular debris and modified lipids. Here, we provide evidence that CSCs selectively use the scavenger receptor CD36 to promote their maintenance using patient-derived CSCs and in vivo xenograft models. CD36 expression was observed in GBM cells in addition to previously described cell types including endothelial cells, macrophages, and microglia. CD36 was enriched in CSCs and was able to functionally distinguish self-renewing cells. CD36 was coexpressed with integrin alpha 6 and CD133, previously described CSC markers, and CD36 reduction resulted in concomitant loss of integrin alpha 6 expression, self-renewal, and tumor initiation capacity. We confirmed oxidized phospholipids, ligands of CD36, were present in GBM and found that the proliferation of CSCs, but not non-CSCs, increased with exposure to oxidized low-density lipoprotein. CD36 was an informative biomarker of malignancy and negatively correlated to patient prognosis. These results provide a paradigm for CSCs to thrive by the selective enhanced expression of scavenger receptors, providing survival, and metabolic advantages.


Assuntos
Neoplasias Encefálicas/metabolismo , Antígenos CD36/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Antígenos CD36/genética , Proliferação de Células , Progressão da Doença , Feminino , Expressão Gênica , Glioblastoma/mortalidade , Glioblastoma/patologia , Estimativa de Kaplan-Meier , Lipoproteínas LDL/fisiologia , Camundongos Nus , Transplante de Neoplasias , Células Tumorais Cultivadas
7.
Glia ; 62(10): 1687-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24909307

RESUMO

Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and ß3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.


Assuntos
Neoplasias Encefálicas/terapia , Carcinogênese/metabolismo , Glioblastoma/terapia , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/fisiopatologia , Carcinogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Vetores Genéticos , Glioblastoma/fisiopatologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas Repressoras/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Temozolomida , Tubulina (Proteína)/metabolismo
8.
Neuro Oncol ; 25(2): 248-260, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35608632

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly lethal malignancy for which neoangiogenesis serves as a defining hallmark. The anti-VEGF antibody, bevacizumab, has been approved for the treatment of recurrent GBM, but resistance is universal. METHODS: We analyzed expression data of GBM patients treated with bevacizumab to discover potential resistance mechanisms. Patient-derived xenografts (PDXs) and cultures were interrogated for effects of phosphofructokinase-1, muscle isoform (PFKM) loss on tumor cell motility, migration, and invasion through genetic and pharmacologic targeting. RESULTS: We identified PFKM as a driver of bevacizumab resistance. PFKM functions dichotomize based on subcellular location: cytosolic PFKM interacted with KIF11, a tubular motor protein, to promote tumor invasion, whereas nuclear PFKM safeguarded genomic stability of tumor cells through interaction with NBS1. Leveraging differential transcriptional profiling, bupivacaine phenocopied genetic targeting of PFKM, and enhanced efficacy of bevacizumab in preclinical GBM models in vivo. CONCLUSION: PFKM drives novel molecular pathways in GBM, offering a translational path to a novel therapeutic paradigm.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfofrutoquinase-1 , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
9.
Cancer Res Commun ; 2(6): 402-416, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688010

RESUMO

The emergence of treatment resistance significantly reduces the clinical utility of many effective targeted therapies. Although both genetic and epigenetic mechanisms of drug resistance have been reported, whether these mechanisms are stochastically selected in individual tumors or governed by a predictable underlying principle is unknown. Here, we report that the dependence of cancer stem cells (CSCs), not bulk tumor cells, on the targeted pathway determines the molecular mechanism of resistance in individual tumors. Using both spontaneous and transplantable mouse models of sonic hedgehog (SHH) medulloblastoma (MB) treated with an SHH/Smoothened inhibitor, sonidegib/LDE225, we show that genetic-based resistance occurs only in tumors that contain SHH-dependent CSCs (SD-CSCs). In contrast, SHH MBs containing SHH-dependent bulk tumor cells but SHH-independent CSCs (SI-CSCs) acquire resistance through epigenetic reprogramming. Mechanistically, elevated proteasome activity in SMOi-resistant SI-CSC MBs alters the tumor cell maturation trajectory through enhanced degradation of specific epigenetic regulators, including histone acetylation machinery components, resulting in global reductions in H3K9Ac, H3K14Ac, H3K56Ac, H4K5Ac, and H4K8Ac marks and gene expression changes. These results provide new insights into how selective pressure on distinct tumor cell populations contributes to different mechanisms of resistance to targeted therapies. This insight provides a new conceptual framework to understand responses and resistance to SMOis and other targeted therapies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Camundongos , Transdução de Sinais , Proteínas Hedgehog/genética , Meduloblastoma/genética , Neoplasias Cerebelares/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo
10.
Cell Adh Migr ; 15(1): 101-115, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843470

RESUMO

The multifaceted roles of metabolism in invasion have been investigated across many cancers. The brain tumor glioblastoma (GBM) is a highly invasive and metabolically plastic tumor with an inevitable recurrence. The neuronal glucose transporter 3 (GLUT3) was previously reported to correlate with poor glioma patient survival and be upregulated in GBM cells to promote therapeutic resistance and survival under restricted glucose conditions. It has been suggested that the increased glucose uptake mediated by GLUT3 elevation promotes survival of circulating tumor cells to facilitate metastasis. Here we suggest a more direct role for GLUT3 in promoting invasion that is not dependent upon changes in cell survival or metabolism. Analysis of glioma datasets demonstrated that GLUT3, but not GLUT1, expression was elevated in invasive disease. In human xenograft derived GBM cells, GLUT3, but not GLUT1, elevation significantly increased invasion in transwell assays, but not growth or migration. Further, there were no changes in glycolytic metabolism that correlated with invasive phenotypes. We identified the GLUT3 C-terminus as mediating invasion: substituting the C-terminus of GLUT1 for that of GLUT3 reduced invasion. RNA-seq analysis indicated changes in extracellular matrix organization in GLUT3 overexpressing cells, including upregulation of osteopontin. Together, our data suggest a role for GLUT3 in increasing tumor cell invasion that is not recapitulated by GLUT1, is separate from its role in metabolism and survival as a glucose transporter, and is likely broadly applicable since GLUT3 expression correlates with metastasis in many solid tumors.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Osteopontina/metabolismo , RNA-Seq
11.
Nat Commun ; 10(1): 4258, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534142

RESUMO

The human genome is folded into regulatory units termed 'topologically-associated domains' (TADs). Genome-wide studies support a global role for the insulator protein CTCF in mediating chromosomal looping and the topological constraint of TAD boundaries. However, the impact of individual insulators on enhancer-gene interactions and transcription remains poorly understood. Here, we investigate epigenome editing strategies for perturbing individual CTCF insulators and evaluating consequent effects on genome topology and transcription. We show that fusions of catalytically-inactive Cas9 (dCas9) to transcriptional repressors (dCas9-KRAB) and DNA methyltransferases (dCas9-DNMT3A, dCas9-DNMT3A3L) can selectively displace CTCF from specific insulators, but only when precisely targeted to the cognate motif. We further demonstrate that stable, partially-heritable insulator disruption can be achieved through combinatorial hit-and-run epigenome editing. Finally, we apply these strategies to simulate an insulator loss mechanism implicated in brain tumorigenesis. Our study provides strategies for stably modifying genome organization and gene activity without altering the underlying DNA sequence.


Assuntos
Fator de Ligação a CCCTC/genética , Proteína 9 Associada à CRISPR/genética , Carcinogênese/genética , DNA (Citosina-5-)-Metiltransferases/genética , Edição de Genes/métodos , Proteínas Recombinantes de Fusão/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas/genética , Carcinogênese/patologia , Linhagem Celular , Metilação de DNA , DNA Metiltransferase 3A , Epigênese Genética/genética , Genoma Humano/genética , Células HEK293 , Humanos , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/metabolismo
12.
Science ; 357(6348)2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28729483

RESUMO

Chromatin and associated epigenetic mechanisms stabilize gene expression and cellular states while also facilitating appropriate responses to developmental or environmental cues. Genetic, environmental, or metabolic insults can induce overly restrictive or overly permissive epigenetic landscapes that contribute to pathogenesis of cancer and other diseases. Restrictive chromatin states may prevent appropriate induction of tumor suppressor programs or block differentiation. By contrast, permissive or "plastic" states may allow stochastic oncogene activation or nonphysiologic cell fate transitions. Whereas many stochastic events will be inconsequential "passengers," some will confer a fitness advantage to a cell and be selected as "drivers." We review the broad roles played by epigenetic aberrations in tumor initiation and evolution and their potential to give rise to all classic hallmarks of cancer.


Assuntos
Carcinogênese/genética , Cromatina/metabolismo , Epigênese Genética , Neoplasias/genética , Oncogenes , Cromatina/química , Metilação de DNA , Humanos
13.
Nat Neurosci ; 20(5): 661-673, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28346452

RESUMO

Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Purinas/biossíntese , Monofosfato de Adenosina/biossíntese , Proliferação de Células/fisiologia , Células Cultivadas , Genômica , Glioma/enzimologia , Glioma/metabolismo , Glicólise/fisiologia , Guanosina Monofosfato/biossíntese , Humanos , Metabolômica , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/fisiologia , Ribose-Fosfato Pirofosfoquinase/biossíntese , Regulação para Cima
14.
Cell Stem Cell ; 20(2): 233-246.e7, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-27989769

RESUMO

Glioblastoma, the most common and aggressive malignant brain tumor, is propagated by stem-like cancer cells refractory to existing therapies. Understanding the molecular mechanisms that control glioblastoma stem cell (GSC) proliferation and drug resistance may reveal opportunities for therapeutic interventions. Here we show that GSCs can reversibly transition to a slow-cycling, persistent state in response to targeted kinase inhibitors. In this state, GSCs upregulate primitive developmental programs and are dependent upon Notch signaling. This transition is accompanied by widespread redistribution of repressive histone methylation. Accordingly, persister GSCs upregulate, and are dependent on, the histone demethylases KDM6A/B. Slow-cycling cells with high Notch activity and histone demethylase expression are present in primary glioblastomas before treatment, potentially contributing to relapse. Our findings illustrate how cancer cells may hijack aspects of native developmental programs for deranged proliferation, adaptation, and tolerance. They also suggest strategies for eliminating refractory tumor cells by targeting epigenetic and developmental pathways.


Assuntos
Montagem e Desmontagem da Cromatina , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Acetilação/efeitos dos fármacos , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Glioblastoma/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Metilação/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
15.
Neuro Oncol ; 18(5): 656-66, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26374689

RESUMO

BACKGROUND: Cancer stem cells (CSCs) provide an additional layer of complexity for tumor models and targets for therapeutic development. The balance between CSC self-renewal and differentiation is driven by niche components including adhesion, which is a hallmark of stemness. While studies have demonstrated that the reduction of adhesion molecules, such as integrins and junctional adhesion molecule-A (JAM-A), decreases CSC maintenance. The molecular circuitry underlying these interactions has yet to be resolved. METHODS: MicroRNA screening predicted that microRNA-145 (miR-145) would bind to JAM-A. JAM-A overexpression in CSCs was evaluated both in vitro (proliferation and self-renewal) and in vivo (intracranial tumor initiation). miR-145 introduction into CSCs was similarly assessed in vitro. Additionally, The Cancer Genome Atlas dataset was evaluated for expression levels of miR-145 and overall survival of the different molecular groups. RESULTS: Using patient-derived glioblastoma CSCs, we confirmed that JAM-A is suppressed by miR-145. CSCs expressed low levels of miR-145, and its introduction decreased self-renewal through reductions in AKT signaling and stem cell marker (SOX2, OCT4, and NANOG) expression; JAM-A overexpression rescued these effects. These findings were predictive of patient survival, with a JAM-A/miR-145 signature robustly predicting poor patient prognosis. CONCLUSIONS: Our results link CSC-specific niche signaling to a microRNA regulatory network that is altered in glioblastoma and can be targeted to attenuate CSC self-renewal.


Assuntos
Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular/metabolismo , Adesão Celular/fisiologia , Glioblastoma/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Superfície Celular/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Camundongos , Células-Tronco Neoplásicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
16.
Oncotarget ; 6(15): 13241-54, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25938542

RESUMO

Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes-FOXM1 and p21CIP1/WAF1-elucidating a potential point for therapeutic intervention.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas Cdc20/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Western Blotting , Neoplasias Encefálicas/patologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/metabolismo , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Células Tumorais Cultivadas
17.
Nat Cell Biol ; 17(2): 170-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25580734

RESUMO

Tumour-associated macrophages (TAMs) are enriched in glioblastoma multiformes (GBMs) that contain glioma stem cells (GSCs) at the apex of their cellular hierarchy. The correlation between TAM density and glioma grade suggests a supportive role for TAMs in tumour progression. Here we interrogated the molecular link between GSCs and TAM recruitment in GBMs and demonstrated that GSCs secrete periostin (POSTN) to recruit TAMs. TAM density correlates with POSTN levels in human GBMs. Silencing POSTN in GSCs markedly reduced TAM density, inhibited tumour growth, and increased survival of mice bearing GSC-derived xenografts. We found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood. Disrupting POSTN specifically attenuated the tumour-supportive M2 type of TAMs in xenografts. POSTN recruits TAMs through the integrin αvß3 as blocking this signalling by an RGD peptide inhibited TAM recruitment. Our findings highlight the possibility of improving GBM treatment by targeting POSTN-mediated TAM recruitment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Macrófagos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/sangue , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células , Fatores Quimiotáticos/metabolismo , Feminino , Imunofluorescência , Inativação Gênica , Glioblastoma/sangue , Humanos , Integrina alfaVbeta3/metabolismo , Medições Luminescentes , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nat Neurosci ; 18(4): 501-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730670

RESUMO

Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.


Assuntos
Neoplasias Encefálicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Dinaminas , GTP Fosfo-Hidrolases/antagonistas & inibidores , Humanos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Prognóstico
19.
Cancer Cell ; 28(4): 441-455, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26461092

RESUMO

Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progenitors. Direct interrogation of iron uptake demonstrated that CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin, two core iron regulators, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable dependence.


Assuntos
Neoplasias Encefálicas/patologia , Ferritinas/metabolismo , Glioblastoma/patologia , Ferro/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores da Transferrina/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Células Cultivadas , Células-Tronco Embrionárias , Epigênese Genética , Ferritinas/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Receptores da Transferrina/genética , Análise de Sequência de RNA , Transdução de Sinais , Transferrina/metabolismo
20.
Cell Rep ; 11(7): 1031-42, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25959821

RESUMO

The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.


Assuntos
Neoplasias Encefálicas/patologia , Conexina 43/metabolismo , Conexinas/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Comunicação Celular/fisiologia , Imunofluorescência , Junções Comunicantes/metabolismo , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Potenciais da Membrana/fisiologia , Células-Tronco Neoplásicas/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA