Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(11): 6326-6334, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32134067

RESUMO

This paper reports measurements of the temperature dependence of the rate constants for H-atom abstraction reactions from propane and n-butane by the light isotopic H-atom muonium (Mu), kMu(T), over temperatures in the range 300 K to 435 K. Simple Arrhenius fits to these data yield activation energies, E, that are some 2-4 times lower than E found from corresponding fits for the H + propane and H + n-butane reactions studied elsewhere, both experimentally and theoretically, and fit over a similar temperature range. These activation energies E are also much lower than estimated from zero-point-energy corrected vibrationally adiabatic potential barriers, both results suggesting that quantum tunneling plays an important role in determining kMu(T) and for the Mu + propane reaction in particular. The results are expected to pose a considerable challenge to reaction rate theory for isotopic H-atom reactions in alkane systems.

2.
Phys Chem Chem Phys ; 17(30): 19901-10, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26165545

RESUMO

The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-µSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

3.
J Phys Chem A ; 119(28): 7247-56, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25664674

RESUMO

The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene.

4.
Angew Chem Int Ed Engl ; 53(50): 13706-9, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25303174

RESUMO

Isotope effects are important in the making and breaking of chemical bonds in chemical reactivity. Here we report on a new discovery, that isotopic substitution can fundamentally alter the nature of chemical bonding. This is established by systematic, rigorous quantum chemistry calculations of the isotopomers BrLBr, where L is an isotope of hydrogen. All the heavier isotopomers of BrHBr, BrDBr, BrTBr, and Br(4)HBr, the latter indicating the muonic He atom, the heaviest isotope of H, can only be stabilized as van der Waals bound states. In contrast, the lightest isotopomer, BrMuBr, with Mu the muonium atom, alone exhibits vibrational bonding, in accord with its possible observation in a recent experiment on the Mu+Br2 reaction. Accordingly, BrMuBr is stabilized at the saddle point of the potential energy surface due to a net decrease in vibrational zero point energy that overcompensates the increase in potential energy.

5.
Phys Chem Chem Phys ; 14(31): 10953-66, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22782452

RESUMO

New evidence is presented for the observation of a muoniated radical in the Mu + Br(2) system, from µSR longitudinal field (LF) repolarisation studies in the gas phase, at Br(2) concentrations of 0.1 bar in a Br(2)/N(2) mixture at 300 K and at 10 bar total pressure. The LF repolarisation curve, up to a field of 4.5 kG, reveals two paramagnetic components, one for the Mu atom, formed promptly during the slowing-down process of the positive muon, with a known Mu hyperfine coupling constant (hfcc) of 4463 MHz, and one for a muoniated radical formed by fast Mu addition. From model fits to the Br(2)/N(2) data, the radical component is found to have an unusually high muon hfcc, assessed to be ∼3300 MHz with an overall error due to systematics expected to exceed 10%. This high muon hfcc is taken as evidence for the observation of either the Br-Mu-Br radical, and hence of vibrational bonding in this H[combining low line]-L[combining low line]-H[combining low line] system, or of a MuBr(2) van der Waals complex formed in the entrance channel. Preliminary ab initio electronic structure calculations suggest the latter is more likely but fully rigorous calculations of the effect of dynamics on the hfcc for either system have yet to be carried out.

6.
J Phys Chem A ; 115(13): 2765-77, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21395223

RESUMO

The hyperfine coupling constants (HFCCs) of all the butyl radicals that can be produced by muonium (Mu) addition to butene isomers (1- and 2-butene and isobutene) have been calculated, to compare with the experimental results for the muon and proton HFFCs for these radicals reported in paper II (Fleming, D. G.; et al. J. Phys. Chem. A 2011, 10.1021/jp109676b) that follows. The equilibrium geometries and HFCCs of these muoniated butyl radicals as well as their unsubstituted isotopomers were treated at both the spin-unrestricted MP2/EPR-III and B3LYP/EPR-III levels of theory. Comparisons with calculations carried out for the EPR-II basis set have also been made. All calculations were carried out in vacuo at 0 K only. A C-Mu bond elongation scheme that lengthens the equilibrium C-H bond by a factor of 1.076, on the basis of recent quantum calculations of the muon HFCCs of the ethyl radical, has been exploited to determine the vibrationally corrected muon HFCCs. The sensitivity of the results to small variations around this scale factor was also investigated. The computational methodology employed was "benchmarked" in comparisons with the ethyl radical, both with higher level calculations and with experiment. For the ß-HFCCs of interest, compared to B3LYP, the MP2 calculations agree better with higher level theories and with experiment in the case of the eclipsed C-Mu bond and are generally deemed to be more reliable in predicting the equilibrium conformations and muon HFCCs near 0 K, in the absence of environmental effects. In some cases though, the experimental results in paper II demonstrate that environmental effects enhance the muon HFCC in the solid phase, where much better agreement with the experimental muon HFCCs near 0 K is found from B3LYP than from MP2. This seemingly better level of agreement is probably fortuitous, due to error cancellations in the DFT calculations, which appear to mimic these environmental effects. For the staggered proton HFCCs of the butyl radicals exhibiting no environmental effect in paper II, the best agreement with experiment is consistently found from the B3LYP calculations, in agreement also with benchmark calculations carried out for the ethyl radical.

7.
J Phys Chem A ; 115(13): 2778-93, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21395224

RESUMO

Reported here is the first µSR study of the muon (A(µ)) and proton (A(p)) ß-hyperfine coupling constants (Hfcc) of muoniated sec-butyl radicals, formed by muonium (Mu) addition to 1-butene and to cis- and trans-2-butene. The data are compared with in vacuo spin-unrestricted MP2 and hybrid DFT/B3YLP calculations reported in the previous paper (I), which played an important part in the interpretation of the data. The T-dependences of both the (reduced) muon, A(µ)'(T), and proton, A(p)(T), Hfcc are surprisingly well explained by a simple model, in which the calculated Hfcc from paper I at energy minima of 0 and near ±120° are thermally averaged, assuming an energy dependence given by a basic 2-fold torsional potential. Fitted torsional barriers to A(µ)'(T) from this model are similar (~3 kJ/mol) for all muoniated butyl radicals, suggesting that these are dominated by ZPE effects arising from the C−Mu bond, but for A(p)(T) exhibit wide variations depending on environment. For the cis- and trans-2-butyl radicals formed from 2-butene, A(µ)'(T) exhibits clear discontinuities at bulk butene melting points, evidence for molecular interactions enhancing these muon Hfcc in the environment of the solid state, similar to that found in earlier reports for muoniated tert-butyl. In contrast, for Mu−sec-butyl formed from 1-butene, there is no such discontinuity. The muon hfcc for the trans-2-butyl radical are seemingly very well predicted by B3LYP calculations in the solid phase, but for sec-butyl from 1-butene, showing the absence of further interactions, much better agreement is found with the MP2 calculations across the whole temperature range. Examples of large proton Hfcc near 0 K are also reported, due to eclipsed C−H bonds, in like manner to C−Mu, which then also exhibit clear discontinuities in A(p)(T) at bulk melting points. The data suggest that the good agreement found between theory and experiment from the B3LYP calculations for eclipsed bonds in the solid phase may be fortuitous. For the staggered protons of the sec-butyl radicals formed, no discontinuities are seen at all in A(p)(T), also demonstrating no further effects of molecular interactions on these particular proton Hfcc.

8.
J Chem Phys ; 135(18): 184310, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22088068

RESUMO

The neutral muonic helium atom (4)Heµ, in which one of the electrons of He is replaced by a negative muon, may be effectively regarded as the heaviest isotope of the hydrogen atom, with a mass of 4.115 amu. We report details of the first muon spin rotation (µSR) measurements of the chemical reaction rate constant of (4)Heµ with molecular hydrogen, (4)Heµ + H(2) → (4)HeµH + H, at temperatures of 295.5, 405, and 500 K, as well as a µSR measurement of the hyperfine coupling constant of muonic He at high pressures. The experimental rate constants, k(Heµ), are compared with the predictions of accurate quantum mechanical (QM) dynamics calculations carried out on a well converged Born-Huang (BH) potential energy surface, based on complete configuration interaction calculations and including a Born-Oppenheimer diagonal correction. At the two highest measured temperatures the agreement between the quantum theory and experiment is good to excellent, well within experimental uncertainties that include an estimate of possible systematic error, but at 295.5 K the quantum calculations for k(Heµ) are below the experimental value by 2.1 times the experimental uncertainty estimates. Possible reasons for this discrepancy are discussed. Variational transition state theory calculations with multidimensional tunneling have also been carried out for k(Heµ) on the BH surface, and they agree with the accurate QM rate constants to within 30% over a wider temperature range of 200-1000 K. Comparisons between theory and experiment are also presented for the rate constants for both the D + H(2) and Mu + H(2) reactions in a novel study of kinetic isotope effects for the H + H(2) reactions over a factor of 36.1 in isotopic mass of the atomic reactant.

9.
J Phys Chem Lett ; 12(17): 4154-4159, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890795

RESUMO

Calculations of kinetic isotope effects (KIEs) provide challenging tests of quantal mass effects on reaction rates, and muonium KIEs are the most challenging. Here, we show that it can be very important to include reaction-coordinate-dependent vibrational anharmonicity along the whole reaction path to calculate tunneling probabilities and KIEs. For the reaction of propane with Mu, this decreases both the height and width of the vibrationally adiabatic potential barrier, with both effects increasing the rate constants. Our results agree well with the experimental observations.

10.
J Phys Chem B ; 120(8): 1641-8, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26484648

RESUMO

The rate constant for the H atom abstraction reaction from methane by the muonic helium atom, Heµ + CH4 → HeµH + CH3, is reported at 500 K and compared with theory, providing an important test of both the potential energy surface (PES) and reaction rate theory for the prototypical polyatomic CH5 reaction system. The theory used to characterize this reaction includes both variational transition-state (CVT/µOMT) theory (VTST) and ring polymer molecular dynamics (RPMD) calculations on a recently developed PES, which are compared as well with earlier calculations on different PESs for the H, D, and Mu + CH4 reactions, the latter, in particular, providing for a variation in atomic mass by a factor of 36. Though rigorous quantum calculations have been carried out for the H + CH4 reaction, these have not yet been extended to the isotopologues of this reaction (in contrast to H3), so it is important to provide tests of less rigorous theories in comparison with kinetic isotope effects measured by experiment. In this regard, the agreement between the VTST and RPMD calculations and experiment for the rate constant of the Heµ + CH4 reaction at 500 K is excellent, within 10% in both cases, which overlaps with experimental error.

11.
Science ; 331(6016): 448-50, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21273484

RESUMO

The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 atomic mass units ((4.1)H), because the negative muon almost perfectly screens one proton charge. We report the reaction rate of (4.1)H with (1)H(2) to produce (4.1)H(1)H + (1)H at 295 to 500 kelvin. The experimental rate constants are compared with the predictions of accurate quantum-mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of (0.11)H (where (0.11)H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 kelvin, and variational transition-state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10(-4) to 10(-2) range.

12.
J Chem Phys ; 125(1): 014307, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16863298

RESUMO

The room-temperature termolecular rate constants, k0, for the Mu + CO + M<==>MuCO + M (M = He, N2, Ar) recombination reaction have been measured by the muSR technique, and are reported for moderator gas pressures of up to approximately 200 bar (densities less, similar 0.4 x 10(22) molec cm(-3)). The experimental relaxation rates reveal an unusual signature, in being dominated by the electron spin-rotation interaction in the MuCO radical that is formed in the addition step. In N2 moderator, k0 = 1.2+/-0.1 x 10(-34) cm(6) s(-1), only about 30% higher than found in Ar or He. The experimental results are compared with theoretical calculations carried out on the Werner-Keller-Schinke (WKS) surface [Keller et al., J. Chem. Phys. 105, 4983 (1996)], within the framework of the isolated resonance model (IRM). The positions and lifetimes of resonance states are obtained by solving the complex Hamiltonian for the nonrotating MuCO system, using an L2 method, with an absorbing potential in the asymptotic region. Accurate values of the vibrational bound and resonance states of MuCO reveal unprecedented isotope effects in comparisons with HCO, due to the remarkable effect of replacing H by the very light Mu atom (m(Mu) approximately (1/9)m(H)). Due to its pronounced zero-point energy shift, there are only two (J = 0) bound states in MuCO. Contributions from nonzero J states to the termolecular rate constants are evaluated through the J-shifting approximation, with rotational constants evaluated at the potential minimum. The value of the important A constant (181 cm(-1)) used in this approximation was supported by accurate J = K = 1 calculations, from which A = 180 cm(-1) was obtained by numerical evaluation. The calculations presented here, with a "weak collision factor" beta c = 0.001, indicative of the very sparse density of MuCO states, give a very good account of both the magnitude and pressure dependence of the experimental rates, but only when the fact that the two initially bound (J = 0) states become resonances for J > 0 is taken into account. This is the first time in IRM calculations of atom-molecule recombination reactions where J not equal to 0 states have proven to be so important, thus providing a truly unique test of quantum rate theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA