Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ChemMedChem ; 17(24): e202200455, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36194525

RESUMO

Antibiotic resistance is a growing problem facing global societies today. Many new antibiotics are derivatized versions of already existing antibiotics, which allows for antibiotic resistance to arise. To combat this issue, new antibiotics with different core structures need to be elucidated. Asymmetrical polyacetylenes have been isolated from natural products and they have previously been demonstrated to exhibit antimicrobial and antibacterial activity; however, their synthetic preparation has not made them easily amenable to rapid derivatization for SAR studies. Using a combination of solution and solid-supported chemistries, an array of diynes inspired by a known natural product were prepared and assessed for antibacterial activity. Ultimately, several compounds were identified with improved activity in bacterial viability assays. Moreover, some compounds were discovered that displayed a degree of specificity for E. coli over P. fluorescens and vice versa. These new compounds show promise, and further investigation is needed to pinpoint the specific structural components that elicit biological activity.


Assuntos
Produtos Biológicos , Di-Inos , Escherichia coli , Poli-Inos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Pharmaceutics ; 14(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559319

RESUMO

Protein modification with non-canonical amino acids (ncAAs) represents a useful technology to afford homogenous samples of bioconjugates with site-specific modification. This technique can be directly applied to the detection of aberrant SUMOylation patterns, which are often indicative of disease states. Modified SUMO-trapping proteins, consisting of a catalytically inactive ULP1 fragment (UTAG) fused to the maltose-binding protein MBP, are useful reagents for the binding and labeling of SUMOylated proteins. Mutation of this UTAG fusion protein to facilitate amber suppression technologies for the genetic incorporation of ncAAs was assessed to provide a functional handle for modification. Ultimately, two sites in the maltose-binding protein (MBP) fusion were identified as ideal for incorporation and bioconjugation without perturbation to the SUMO-trapping ability of the UTAG protein. This functionality was then employed to label SUMOylated proteins in HeLa cells and demonstrate their enrichment in the nucleus. This modified UTAG-MBP-ncAA protein has far-reaching applications for both diagnostics and therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA