Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 311(3): e231442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860897

RESUMO

Background Visual assessment of amyloid PET scans relies on the availability of radiologist expertise, whereas quantification of amyloid burden typically involves MRI for processing and analysis, which can be computationally expensive. Purpose To develop a deep learning model to classify minimally processed brain PET scans as amyloid positive or negative, evaluate its performance on independent data sets and different tracers, and compare it with human visual reads. Materials and Methods This retrospective study used 8476 PET scans (6722 patients) obtained from late 2004 to early 2023 that were analyzed across five different data sets. A deep learning model, AmyloidPETNet, was trained on 1538 scans from 766 patients, validated on 205 scans from 95 patients, and internally tested on 184 scans from 95 patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) fluorine 18 (18F) florbetapir (FBP) data set. It was tested on ADNI scans using different tracers and scans from independent data sets. Scan amyloid positivity was based on mean cortical standardized uptake value ratio cutoffs. To compare with model performance, each scan from both the Centiloid Project and a subset of the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study were visually interpreted with a confidence level (low, intermediate, high) of amyloid positivity/negativity. The area under the receiver operating characteristic curve (AUC) and other performance metrics were calculated, and Cohen κ was used to measure physician-model agreement. Results The model achieved an AUC of 0.97 (95% CI: 0.95, 0.99) on test ADNI 18F-FBP scans, which generalized well to 18F-FBP scans from the Open Access Series of Imaging Studies (AUC, 0.95; 95% CI: 0.93, 0.97) and the A4 study (AUC, 0.98; 95% CI: 0.98, 0.98). Model performance was high when applied to data sets with different tracers (AUC ≥ 0.97). Other performance metrics provided converging evidence. Physician-model agreement ranged from fair (Cohen κ = 0.39; 95% CI: 0.16, 0.60) on a sample of mostly equivocal cases from the A4 study to almost perfect (Cohen κ = 0.93; 95% CI: 0.86, 1.0) on the Centiloid Project. Conclusion The developed model was capable of automatically and accurately classifying brain PET scans as amyloid positive or negative without relying on experienced readers or requiring structural MRI. Clinical trial registration no. NCT00106899 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bryan and Forghani in this issue.


Assuntos
Doença de Alzheimer , Encéfalo , Aprendizado Profundo , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/classificação , Masculino , Feminino , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Amiloide/metabolismo , Idoso de 80 Anos ou mais
2.
Hum Brain Mapp ; 44(18): 6375-6387, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37867465

RESUMO

Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (µ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-µ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-µ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Biomarcadores , Atrofia , Proteínas tau
3.
Ann Neurol ; 92(5): 729-744, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36151869

RESUMO

OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, ß-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. ANN NEUROL 2022;92:729-744.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides , Amiloide , Biomarcadores , Apolipoproteínas E
4.
Eur J Nucl Med Mol Imaging ; 50(9): 2669-2682, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017737

RESUMO

PURPOSE: Pittsburgh Compound-B (11C-PiB) and 18F-florbetapir are amyloid-ß (Aß) positron emission tomography (PET) radiotracers that have been used as endpoints in Alzheimer's disease (AD) clinical trials to evaluate the efficacy of anti-Aß monoclonal antibodies. However, comparing drug effects between and within trials may become complicated if different Aß radiotracers were used. To study the consequences of using different Aß radiotracers to measure Aß clearance, we performed a head-to-head comparison of 11C-PiB and 18F-florbetapir in a Phase 2/3 clinical trial of anti-Aß monoclonal antibodies. METHODS: Sixty-six mutation-positive participants enrolled in the gantenerumab and placebo arms of the first Dominantly Inherited Alzheimer Network Trials Unit clinical trial (DIAN-TU-001) underwent both 11C-PiB and 18F-florbetapir PET imaging at baseline and during at least one follow-up visit. For each PET scan, regional standardized uptake value ratios (SUVRs), regional Centiloids, a global cortical SUVR, and a global cortical Centiloid value were calculated. Longitudinal changes in SUVRs and Centiloids were estimated using linear mixed models. Differences in longitudinal change between PET radiotracers and between drug arms were estimated using paired and Welch two sample t-tests, respectively. Simulated clinical trials were conducted to evaluate the consequences of some research sites using 11C-PiB while other sites use 18F-florbetapir for Aß PET imaging. RESULTS: In the placebo arm, the absolute rate of longitudinal change measured by global cortical 11C-PiB SUVRs did not differ from that of global cortical 18F-florbetapir SUVRs. In the gantenerumab arm, global cortical 11C-PiB SUVRs decreased more rapidly than global cortical 18F-florbetapir SUVRs. Drug effects were statistically significant across both Aß radiotracers. In contrast, the rates of longitudinal change measured in global cortical Centiloids did not differ between Aß radiotracers in either the placebo or gantenerumab arms, and drug effects remained statistically significant. Regional analyses largely recapitulated these global cortical analyses. Across simulated clinical trials, type I error was higher in trials where both Aß radiotracers were used versus trials where only one Aß radiotracer was used. Power was lower in trials where 18F-florbetapir was primarily used versus trials where 11C-PiB was primarily used. CONCLUSION: Gantenerumab treatment induces longitudinal changes in Aß PET, and the absolute rates of these longitudinal changes differ significantly between Aß radiotracers. These differences were not seen in the placebo arm, suggesting that Aß-clearing treatments may pose unique challenges when attempting to compare longitudinal results across different Aß radiotracers. Our results suggest converting Aß PET SUVR measurements to Centiloids (both globally and regionally) can harmonize these differences without losing sensitivity to drug effects. Nonetheless, until consensus is achieved on how to harmonize drug effects across radiotracers, and since using multiple radiotracers in the same trial may increase type I error, multisite studies should consider potential variability due to different radiotracers when interpreting Aß PET biomarker data and, if feasible, use a single radiotracer for the best results. TRIAL REGISTRATION: ClinicalTrials.gov NCT01760005. Registered 31 December 2012. Retrospectively registered.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos de Anilina , Etilenoglicóis , Encéfalo/metabolismo
5.
Ann Neurol ; 89(2): 254-265, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33111990

RESUMO

OBJECTIVES: African Americans are at greater risk for developing Alzheimer's disease (AD) dementia than non-Hispanic whites. In addition to biological considerations (eg, genetic influences and comorbid disorders), social and environmental factors may increase the risk of AD dementia. This paper (1) assesses neuroimaging biomarkers of amyloid (A), tau (T), and neurodegeneration (N) for potential racial differences and (2) considers mediating effects of socioeconomic status (SES) and measures of small vessel and cardiovascular disease on observed race differences. METHODS: Imaging measures of AT(N) (amyloid and tau positron emission tomography [PET]) structural magnetic resonance imaging (MRI), and resting state functional connectivity (rs-fc) were collected from African American (n = 131) and white (n = 685) cognitively normal participants age 45 years and older. Measures of small vessel and cardiovascular disease (white matter hyperintensities [WMHs] on MRI, blood pressure, and body mass index [BMI]) and area-based SES were included in mediation analyses. RESULTS: Compared to white participants, African American participants had greater neurodegeneration, as measured by decreased cortical volumes (Cohen's f2 = 0.05, p < 0.001). SES mediated the relationship between race and cortical volumes. There were no significant race effects for amyloid, tau, or rs-fc signature. INTERPRETATION: Modifiable factors, such as differences in social contexts and resources, particularly area-level SES, may contribute to observed racial differences in AD. Future studies should emphasize collection of relevant psychosocial factors in addition to the development of intentional diversity and inclusion efforts to improve the racial/ethnic and socioeconomic representativeness of AD studies. ANN NEUROL 2021;89:254-265.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Negro ou Afro-Americano , Encéfalo , Classe Social , Proteínas tau , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/etnologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Carbolinas , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Etilenoglicóis , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Análise de Mediação , Neuroimagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Proteínas tau/metabolismo , Tiazóis , Brancos
6.
Magn Reson Med ; 86(1): 499-513, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33559218

RESUMO

PURPOSE: The accuracy of existing PET/MR attenuation correction (AC) has been limited by a lack of correlation between MR signal and tissue electron density. Based on our finding that longitudinal relaxation rate, or R1 , is associated with CT Hounsfield unit in bone and soft tissues in the brain, we propose a deep learning T1 -enhanced selection of linear attenuation coefficients (DL-TESLA) method to incorporate quantitative R1 for PET/MR AC and evaluate its accuracy and longitudinal test-retest repeatability in brain PET/MR imaging. METHODS: DL-TESLA uses a 3D residual UNet (ResUNet) for pseudo-CT (pCT) estimation. With a total of 174 participants, we compared PET AC accuracy of DL-TESLA to 3 other methods adopting similar 3D ResUNet structures but using UTE R2∗ , or Dixon, or T1 -MPRAGE as input. With images from 23 additional participants repeatedly scanned, the test-retest differences and within-subject coefficient of variation of standardized uptake value ratios (SUVR) were compared between PET images reconstructed using either DL-TESLA or CT for AC. RESULTS: DL-TESLA had (1) significantly lower mean absolute error in pCT, (2) the highest Dice coefficients in both bone and air, (3) significantly lower PET relative absolute error in whole brain and various brain regions, (4) the highest percentage of voxels with a PET relative error within both ±3% and ±5%, (5) similar to CT test-retest differences in SUVRs from the cerebrum and mean cortical (MC) region, and (6) similar to CT within-subject coefficient of variation in cerebrum and MC. CONCLUSION: DL-TESLA demonstrates excellent PET/MR AC accuracy and test-retest repeatability.


Assuntos
Aprendizado Profundo , Demência , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagem Multimodal , Neuroimagem , Tomografia por Emissão de Pósitrons
7.
Eur J Nucl Med Mol Imaging ; 48(10): 3172-3186, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33599811

RESUMO

PURPOSE: Recent studies have shown that standard compartmental models using plasma input or the cerebellum reference tissue input are generally not reliable for quantifying tau burden in dynamic 18F-flortaucipir PET studies of Alzheimer disease. So far, the optimal reference region for estimating 18F-flortaucipir delivery and specific tau binding has yet to be determined. The objective of the study is to improve 18F-flortaucipir brain tau PET quantification using a spatially constrained kinetic model with dual reference tissues. METHODS: Participants were classified as either cognitively normal (CN) or cognitively impaired (CI) based on clinical assessment. T1-weighted structural MRI and 105-min dynamic 18F-flortaucipir PET scans were acquired for each participant. Using both a simplified reference tissue model (SRTM2) and Logan plot with either cerebellum gray matter or centrum semiovale (CS) white matter as the reference tissue, we estimated distribution volume ratios (DVRs) and the relative transport rate constant R1 for region of interest-based (ROI) and voxelwise-based analyses. Conventional linear regression (LR) and LR with spatially constrained (LRSC) parametric imaging algorithms were then evaluated. Noise-induced bias in the parametric images was compared to estimates from ROI time activity curve-based kinetic modeling. We finally evaluated standardized uptake value ratios at early phase (SUVREP, 0.7-2.9 min) and late phase (SUVRLP, 80-105 min) to approximate R1 and DVR, respectively. RESULTS: The percent coefficients of variation of R1 and DVR estimates from SRTM2 with spatially constrained modeling were comparable to those from the Logan plot and SUVRs. The SRTM2 using CS reference tissue with LRSC reduced noise-induced underestimation in the LR generated DVR images to negligible levels (< 1%). Inconsistent overestimation of DVR in the SUVRLP only occurred using the cerebellum reference tissue-based measurements. The CS reference tissue-based DVR and SUVRLP, and cerebellum-based SUVREP and R1 provided higher Cohen's effect size d to detect increased tau deposition and reduced relative tracer transport rate in CI individuals. CONCLUSION: Using a spatially constrained kinetic model with dual reference tissues significantly improved quantification of relative perfusion and tau binding. Cerebellum and CS are the suggested reference tissues to estimate R1 and DVR, respectively, for dynamic 18F-flortaucipir PET studies. Cerebellum-based SUVREP and CS-based SUVRLP may be used to simplify 18F-flortaucipir PET study.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Carbolinas , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
8.
Alzheimer Dis Assoc Disord ; 35(2): 164-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32520734

RESUMO

IMPORTANCE: Female sex is a major risk factor for late-onset Alzheimer disease (AD), and sex hormones have been implicated as a possible protective factor. Neuroimaging studies that evaluated the effects of sex hormones on brain integrity have primarily emphasized neurodegenerative measures rather than amyloid and tau burden. OBJECTIVE: We compared cortical amyloid and regional tau positron emission tomography (PET) deposition between cognitively normal males and females. We also compared preclinical AD pathology between females who have and have not used hormone therapy (HT). Finally, we compared the effects of amyloid and tau pathology on cognition, testing for both sex and HT effects. DESIGN, SETTING, AND PARTICIPANTS: We analyzed amyloid, tau, and cognition in a cognitively normal cross-sectional cohort of older individuals (n=148) followed at the Knight Alzheimer Disease Research Center. Amyloid and tau PET, medication history, and neuropsychological testing were obtained for each participant. RESULTS: Within cognitively normal individuals, there was no difference in amyloid burden by sex. Whether or not we controlled for amyloid burden, female participants had significantly higher tau PET levels than males in multiple regions, including the rostral middle frontal and superior and middle temporal regions. HT accounted for a small reduction in tau PET; however, males still had substantially lower tau PET compared with females. Amyloid PET and tau PET burden were negatively associated with cognitive performance, although increasing amyloid PET did not have a deleterious effect on cognitive performance for women with a history of HT. CONCLUSIONS AND RELEVANCE: Regional sex-related differences in tau PET burden may contribute to the disparities in AD prevalence between males and females. The observed decreases tau PET burden in HT users has important implications for clinical practice and trials and deserves future consideration in longitudinal studies.


Assuntos
Amiloide/metabolismo , Cognição/fisiologia , Hormônios/uso terapêutico , Proteínas tau/metabolismo , Idoso , Encéfalo/metabolismo , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Fatores Sexuais
9.
Alzheimers Dement ; 17(6): 1005-1016, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480178

RESUMO

INTRODUCTION: Machine learning models were used to discover novel disease trajectories for autosomal dominant Alzheimer's disease. METHODS: Longitudinal structural magnetic resonance imaging, amyloid positron emission tomography (PET), and fluorodeoxyglucose PET were acquired in 131 mutation carriers and 74 non-carriers from the Dominantly Inherited Alzheimer Network; the groups were matched for age, education, sex, and apolipoprotein ε4 (APOE ε4). A deep neural network was trained to predict disease progression for each modality. Relief algorithms identified the strongest predictors of mutation status. RESULTS: The Relief algorithm identified the caudate, cingulate, and precuneus as the strongest predictors among all modalities. The model yielded accurate results for predicting future Pittsburgh compound B (R2  = 0.95), fluorodeoxyglucose (R2  = 0.93), and atrophy (R2  = 0.95) in mutation carriers compared to non-carriers. DISCUSSION: Results suggest a sigmoidal trajectory for amyloid, a biphasic response for metabolism, and a gradual decrease in volume, with disease progression primarily in subcortical, middle frontal, and posterior parietal regions.


Assuntos
Doença de Alzheimer , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Adulto , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/metabolismo , Compostos de Anilina , Atrofia/patologia , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Masculino , Mutação/genética , Tiazóis
10.
Neurobiol Dis ; 142: 104960, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522711

RESUMO

Neurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.


Assuntos
Doença de Alzheimer/sangue , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/sangue , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Brain ; 142(4): 1063-1076, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753379

RESUMO

Tauopathy is a hallmark pathology of Alzheimer's disease with a strong relationship with cognitive impairment. As such, understanding tau may be a key to clinical interventions. In vivo tauopathy has been measured using cerebrospinal fluid assays, but these do not provide information about where pathology is in the brain. The introduction of PET ligands that bind to paired helical filaments provides the ability to measure the amount and distribution of tau pathology. The heritability of the age of dementia onset tied to the specific mutations found in autosomal dominant Alzheimer's disease families provides an elegant model to study the spread of tau across the course of the disease as well as the cross-modal relationship between tau and other biomarkers. To better understand the pathobiology of Alzheimer's disease we measured levels of tau PET binding in individuals with dominantly inherited Alzheimer's disease using data from the Dominantly Inherited Alzheimer Network (DIAN). We examined cross-sectional measures of amyloid-ß, tau, glucose metabolism, and grey matter degeneration in 15 cognitively normal mutation non-carriers, 20 asymptomatic carriers, and 15 symptomatic mutation carriers. Linear models examined the association of pathology with group, estimated years to symptom onset, as well as cross-modal relationships. For comparison, tau PET was acquired on 17 older adults with sporadic, late onset Alzheimer disease. Tau PET binding was starkly elevated in symptomatic DIAN individuals throughout the cortex. The brain areas demonstrating elevated tau PET binding overlapped with those seen in sporadic Alzheimer's disease, but with a greater cortical involvement and greater levels of binding despite similar cognitive impairment. Tau PET binding was elevated in the temporal lobe, but the most prominent loci of pathology were in the precuneus and lateral parietal regions. Symptomatic mutation carriers also demonstrated elevated tau PET binding in the basal ganglia, consistent with prior work with amyloid-ß. The degree of tau tracer binding in symptomatic individuals was correlated to other biomarkers, particularly markers of neurodegeneration. In addition to the differences seen with tau, amyloid-ß was increased in both asymptomatic and symptomatic groups relative to non-carriers. Glucose metabolism showed decline primarily in the symptomatic group. MRI indicated structural degeneration in both asymptomatic and symptomatic cohorts. We demonstrate that tau PET binding is elevated in symptomatic individuals with dominantly inherited Alzheimer's disease. Tau PET uptake was tied to the onset of cognitive dysfunction, and there was a higher amount, and different regional pattern of binding compared to late onset, non-familial Alzheimer's disease.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Demência/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Presenilina-1/genética , Proteínas tau/metabolismo
12.
Neurology ; 102(4): e208013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315956

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS: This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of ß-amyloid (Aß) 42/Aß40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS: This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aß42/Aß40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aß42/Aß40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aß42/Aß40 was found in individuals with positive CSF Aß42/Aß40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION: Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Estudos Transversais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Retrospectivos , Proteínas tau , Doenças Neuroinflamatórias , Biomarcadores , Peptídeos beta-Amiloides , Fragmentos de Peptídeos
13.
Brain Commun ; 6(2): fcae081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505230

RESUMO

Alzheimer's disease biomarkers are crucial to understanding disease pathophysiology, aiding accurate diagnosis and identifying target treatments. Although the number of biomarkers continues to grow, the relative utility and uniqueness of each is poorly understood as prior work has typically calculated serial pairwise relationships on only a handful of markers at a time. The present study assessed the cross-sectional relationships among 27 Alzheimer's disease biomarkers simultaneously and determined their ability to predict meaningful clinical outcomes using machine learning. Data were obtained from 527 community-dwelling volunteers enrolled in studies at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in St Louis. We used hierarchical clustering to group 27 imaging, CSF and plasma measures of amyloid beta, tau [phosphorylated tau (p-tau), total tau t-tau)], neuronal injury and inflammation drawn from MRI, PET, mass-spectrometry assays and immunoassays. Neuropsychological and genetic measures were also included. Random forest-based feature selection identified the strongest predictors of amyloid PET positivity across the entire cohort. Models also predicted cognitive impairment across the entire cohort and in amyloid PET-positive individuals. Four clusters emerged reflecting: core Alzheimer's disease pathology (amyloid and tau), neurodegeneration, AT8 antibody-associated phosphorylated tau sites and neuronal dysfunction. In the entire cohort, CSF p-tau181/Aß40lumi and Aß42/Aß40lumi and mass spectrometry measurements for CSF pT217/T217, pT111/T111, pT231/T231 were the strongest predictors of amyloid PET status. Given their ability to denote individuals on an Alzheimer's disease pathological trajectory, these same markers (CSF pT217/T217, pT111/T111, p-tau/Aß40lumi and t-tau/Aß40lumi) were largely the best predictors of worse cognition in the entire cohort. When restricting analyses to amyloid-positive individuals, the strongest predictors of impaired cognition were tau PET, CSF t-tau/Aß40lumi, p-tau181/Aß40lumi, CSF pT217/217 and pT205/T205. Non-specific CSF measures of neuronal dysfunction and inflammation were poor predictors of amyloid PET and cognitive status. The current work utilized machine learning to understand the interrelationship structure and utility of a large number of biomarkers. The results demonstrate that, although the number of biomarkers has rapidly expanded, many are interrelated and few strongly predict clinical outcomes. Examining the entire corpus of available biomarkers simultaneously provides a meaningful framework to understand Alzheimer's disease pathobiological change as well as insight into which biomarkers may be most useful in Alzheimer's disease clinical practice and trials.

14.
EBioMedicine ; 103: 105080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552342

RESUMO

BACKGROUND: Neuroimaging studies often quantify tau burden in standardized brain regions to assess Alzheimer disease (AD) progression. However, this method ignores another key biological process in which tau spreads to additional brain regions. We have developed a metric for calculating the extent tau pathology has spread throughout the brain and evaluate the relationship between this metric and tau burden across early stages of AD. METHODS: 445 cross-sectional participants (aged ≥ 50) who had MRI, amyloid PET, tau PET, and clinical testing were separated into disease-stage groups based on amyloid positivity and cognitive status (older cognitively normal control, preclinical AD, and symptomatic AD). Tau burden and tau spatial spread were calculated for all participants. FINDINGS: We found both tau metrics significantly elevated across increasing disease stages (p < 0.0001) and as a function of increasing amyloid burden for participants with preclinical (p < 0.0001, p = 0.0056) and symptomatic (p = 0.010, p = 0.0021) AD. An interaction was found between tau burden and tau spatial spread when predicting amyloid burden (p = 0.00013). Analyses of slope between tau metrics demonstrated more spread than burden in preclinical AD (ß = 0.59), but then tau burden elevated relative to spread (ß = 0.42) once participants had symptomatic AD, when the tau metrics became highly correlated (R = 0.83). INTERPRETATION: Tau burden and tau spatial spread are both strong biomarkers for early AD but provide unique information, particularly at the preclinical stage. Tau spatial spread may demonstrate earlier changes than tau burden which could have broad impact in clinical trial design. FUNDING: This research was supported by the Knight Alzheimer Disease Research Center (Knight ADRC, NIH grants P30AG066444, P01AG026276, P01AG003991), Dominantly Inherited Alzheimer Network (DIAN, NIH grants U01AG042791, U19AG03243808, R01AG052550-01A1, R01AG05255003), and the Barnes-Jewish Hospital Foundation Willman Scholar Fund.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento por Ressonância Magnética , Neuroimagem , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Feminino , Masculino , Idoso , Neuroimagem/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Estudos Transversais , Idoso de 80 Anos ou mais , Progressão da Doença , Biomarcadores
15.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
16.
Psychol Res ; 77(6): 671-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23266577

RESUMO

This article reviewed the literature comparing true and false memories. Although false memory experience is typically characterized as compellingly similar to true memory experience, research also indicates many distinctions between these two types of memory. The primary focus of this article was on comparing these two types of memory in the Deese-Roediger-McDermott paradigm on a number of independent and dependent measures. Studies that compared true and false memories in recall and recognition rates over retention intervals, as a function of list word presentation duration, list presentation repetition, in recall and recognition latencies, output serial position, phenomenological experiences (conscious and unconscious discrimination between these two types of memories), and neurophysiological processes were reviewed. The conclusion is that the degree to which false memory is experienced and observed as similar to or the same as true memory is a function of a number of variables in the process of acquiring and measuring the memory.


Assuntos
Rememoração Mental , Reconhecimento Psicológico , Repressão Psicológica , Humanos , Memória , Retenção Psicológica
17.
Mem Cognit ; 41(5): 769-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23430763

RESUMO

Research investigating how people remember the distance of paths they walk has shown two apparently conflicting effects of experience during encoding on subsequent distance judgments. By the feature accumulation effect, discrete path features such as turns, houses, or other landmarks cause an increase in remembered distance. By the distractor effect, performance of a concurrent task during path encoding causes a decrease in remembered distance. In this study, we ask the following: What are the conditions that determine whether the feature accumulation or the distractor effect dominates distortions of space? In two experiments, blindfolded participants were guided along two legs of a right triangle while reciting nonsense syllables. On some trials, one of the two legs contained features: horizontally mounted car antennas (gates) that bent out of the way as participants walked past. At the end of the second leg, participants either indicated the remembered path leg lengths using their hands in a ratio estimation task or attempted to walk, unguided, straight back to the beginning. In addition to response mode, visual access to the paths and time between encoding and response were manipulated to determine whether these factors would affect feature accumulation or distractor effects. Path legs with added features were remembered as shorter than those without, but this result was significant only in the haptic response mode data. This finding suggests that when people form spatial memory representations with the intention of navigating in room-scale spaces, interfering with information accumulation substantially distorts spatial memory.


Assuntos
Atenção/fisiologia , Memória/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Percepção de Distância/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
18.
Neuropsychologia ; 188: 108636, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437653

RESUMO

The ability to make accurate predictions about what is going to happen in the near future is critical for comprehension of everyday activity. However, predictive processing may be disrupted in Posttraumatic Stress Disorder (PTSD). Hypervigilance may lead people with PTSD to make inaccurate predictions about the likelihood of future danger. This disruption in predictive processing may occur not only in response to threatening stimuli, but also during processing of neutral stimuli. Therefore, the current study investigated whether PTSD was associated with difficulty making predictions about near-future neutral activity. Sixty-three participants with PTSD and 63 trauma controls completed two tasks, one testing explicit prediction and the other testing implicit prediction. Higher PTSD severity was associated with greater difficulty with predictive processing on both of these tasks. These results suggest that effective treatments to improve functional outcomes for people with PTSD may work, in part, by improving predictive processing.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/complicações
19.
J Alzheimers Dis ; 93(2): 765-777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37092225

RESUMO

BACKGROUND: 18F-flortaucipir PET received FDA approval to visualize aggregated neurofibrillary tangles (NFTs) in brains of adult patients with cognitive impairment being evaluated for Alzheimer's disease (AD). However, manufacturer's guidelines for visual interpretation of 18F-flortaucipir PET differ from how 18F-flortaucipir PET has been measured in research settings using standardized uptake value ratios (SUVRs). How visual interpretation relates to 18F-flortaucipir PET SUVR, cerebrospinal fluid (CSF) biomarkers, or longitudinal clinical assessment is not well understood. OBJECTIVE: We compare various diagnostic methods in participants enrolled in longitudinal observational studies of aging and memory (n = 189, 23 were cognitively impaired). METHODS: Participants had tau PET, Aß PET, MRI, and clinical and cognitive evaluation within 18 months (n = 189); the majority (n = 144) also underwent lumbar puncture. Two radiologists followed manufacturer's guidelines for 18F-flortaucipir PET visual interpretation. RESULTS: Visual interpretation had high agreement with SUVR (98.4%)and moderate agreement with CSF p-tau181 (86.1%). Two participants demonstrated 18F-flortaucipir uptake from meningiomas. Visual interpretation could not predict follow-up clinical assessment in 9.52% of cases. CONCLUSION: Visual interpretation was highly consistent with SUVR (discordant participants had hemorrhagic infarcts or occipital-predominant AD NFT deposition) and moderately consistent with CSF p-tau181 (discordant participants had AD pathophysiology not detectable on tau PET). However, close association between AD NFT deposition and clinical onset in group-level studies does not necessarily hold at the individual level, with discrepancies arising from atypical AD, vascular dementia, or frontotemporal dementia. A better understanding of relationships across imaging, CSF biomarkers, and clinical assessment is needed to provide appropriate diagnoses for these individuals.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas tau/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Peptídeos beta-Amiloides/líquido cefalorraquidiano
20.
Alzheimers Dement (Amst) ; 15(1): e12413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935765

RESUMO

Introduction: Health disparities arise from biological-environmental interactions. Neuroimaging cohorts are reaching sufficiently large sample sizes such that analyses could evaluate how the environment affects the brain. We present a practical guide for applying geospatial methods to a neuroimaging cohort. Methods: We estimated brain age gap (BAG) from structural magnetic resonance imaging (MRI) from 239 city-dwelling participants in St. Louis, Missouri. We compared these participants to population-level estimates from the American Community Survey (ACS). We used geospatial analysis to identify neighborhoods associated with patterns of altered brain structure. We also evaluated the relationship between Area Deprivation Index (ADI) and BAG. Results: We identify areas in St. Louis, Missouri that were significantly associated with higher BAG from a spatially representative cohort. We provide replication code. Conclusion: We observe a relationship between neighborhoods and brain health, which suggests that neighborhood-based interventions could be appropriate. We encourage other studies to geocode participant information to evaluate biological-environmental interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA