Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Theor Biol ; 518: 110641, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33640450

RESUMO

Transposable elements (TEs) are essential components of the eukaryotic genomes. While mostly deleterious, evidence is mounting that TEs provide the host with beneficial adaptations. How 'selfish' or 'parasitic' DNA persists until it helps species evolution is emerging as a major evolutionary puzzle, especially in asexual taxa where the lack of sex strongly impede the spread of TEs. Since occasional but unchecked TE proliferations would ultimately drive host lineages toward extinction, asexual genomes are typically predicted to be free of TEs, which contrasts with their persistence in asexual taxa. We designed innovative 'Eco-genomic' models that account for both host demography and within-host molecular mechanisms of transposition and silencing to analyze their impact on TE dynamics in asexual genome populations. We unraveled that the spread of TEs can be limited to a stable level by density-dependent purifying selection when TE copies are over-dispersed among lineages and the host demographic turn-over is fast. We also showed that TE silencing can protect host populations in two ways; by preventing TEs with weak effects to accumulate or by favoring the elimination of TEs with large effects. Our predictions may explain TE persistence in known asexual taxa that typically show fast demography and where TE copy number variation between lineages is expected. Such TE persistence in asexual taxa potentially has important implications for their evolvability and the preservation of sexual reproduction.


Assuntos
Variações do Número de Cópias de DNA , Evolução Molecular , Elementos de DNA Transponíveis/genética , Eucariotos , Genômica
2.
PLoS Negl Trop Dis ; 17(5): e0011340, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253060

RESUMO

Urbanization is a global trend associated with key socio-economic issues, one of them being to control the transmission of infectious diseases to a urban fraction of the world's population that shall reach 68% in 2050. While urban growth has been shown to favor mosquito species responsible for the transmission of the West Nile Virus (WNV), a major human arbovirosis, the effects of concomitant changes in the host bird communities remain hard to anticipate albeit essential to quantify disease risk and to plan control initiatives. We developed a R0 modelling of WNV transmission in a urban bird community to assess the risk of outbreak in Merida, one of the cities with the highest growth rate in Mexico. The model was parameterized using ecological and epidemiological data collected over the past 15-years on the local vector, Culex quinquefasciatus, and avian community. We identified a 3-weeks summer period during which the vector population strongly amplifies the WNV enzootic transmission and lead to a significant risk of outbreaks in humans. Extensive sensitivity analyses showed that urbanization induced changes in the bird community could lead to an up-to 6-fold increase in the duration of the risk period, while the daily risk could rise by 40%. Interestingly, the increase in Quiscalus mexicanus abundance had 4-5 times larger impact than any other change in the bird community. In such a context, annihilating the current and future risk of WNV outbreaks in Merida requires reducing the mosquito population by 13% and up to 56%, respectively. This study provides an integrative assessment of the current and future risks of WNV outbreak in the fast urbanizing city of Merida, and points toward the implementation of epidemiological monitoring combined with preemptive measures targeting both C. quinquefasciatus and Q. mexicanus populations, as they are expected to have synergistic effects.


Assuntos
Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/veterinária , México/epidemiologia , Cidades/epidemiologia , Estações do Ano , Mosquitos Vetores , Aves , Surtos de Doenças
3.
PLoS Negl Trop Dis ; 13(12): e0007902, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834879

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a Neglected Tropical Disease affecting 8 million people in the Americas. Triatomine hematophagous vectors feed on a high diversity of vertebrate species that can be reservoirs or dead-end hosts, such as avian species refractory to T. cruzi. To understand its transmission dynamics in synanthropic and domesticated species living within villages is essential to quantify disease risk and assess the potential of zooprophylaxis. We developed a SI model of T. cruzi transmission in a multi-host community where vector reproduction and parasite transmission depend on a triatomine blood-feeding rate accounting for vector host preferences and interference while feeding. The model was parameterized to describe T. cruzi transmission in villages of the Yucatan peninsula, Mexico, using the information about Triatoma dimidiata vectors and host populations accumulated over the past 15 years. Extensive analyses of the model showed that dogs are key reservoirs and contributors to human infection, as compared to synanthropic rodents and cats, while chickens or other domesticated avian hosts dilute T. cruzi transmission despite increasing vector abundance. In this context, reducing the number of dogs or increasing avian hosts abundance decreases incidence in humans by up to 56% and 39%, respectively, while combining such changes reduces incidence by 71%. Although such effects are only reached over >10-years periods, they represent important considerations to be included in the design of cost-effective Integrated Vector Management. The concomitant reduction in T. cruzi vector prevalence estimated by simulating these zooprophylactic interventions could indeed complement the removal of colonies from the peridomiciles or the use of insect screens that lower vector indoor abundance by ~60% and ~80%. These new findings reinforce the idea that education and community empowerment to reduce basic risk factors is a cornerstone to reach and sustain the key objective of interrupting Chagas disease intra-domiciliary transmission.


Assuntos
Animais Domésticos/parasitologia , Animais Selvagens/parasitologia , Doença de Chagas/transmissão , Reservatórios de Doenças/parasitologia , Transmissão de Doença Infecciosa , Insetos Vetores/crescimento & desenvolvimento , Triatoma/crescimento & desenvolvimento , Animais , Doença de Chagas/veterinária , Simulação por Computador , Humanos , Incidência , México
4.
Evol Appl ; 11(4): 470-487, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29636800

RESUMO

The aetiological agent of Chagas disease, Trypanosoma cruzi, is a key human pathogen afflicting most populations of Latin America. This vectorborne parasite is transmitted by haematophageous triatomines, whose control by large-scale insecticide spraying has been the main strategy to limit the impact of the disease for over 25 years. While those international initiatives have been successful in highly endemic areas, this systematic approach is now challenged by the emergence of insecticide resistance and by its low efficacy in controlling species that are only partially adapted to human habitat. In this contribution, we review evidences that Chagas disease control shall now be entering a second stage that will rely on a better understanding of triatomines adaptive potential, which requires promoting microevolutionary studies and -omic approaches. Concomitantly, we show that our knowledge of the determinants of the evolution of T. cruzi high diversity and low virulence remains too limiting to design evolution-proof strategies, while such attributes may be part of the future of Chagas disease control after the 2020 WHO's target of regional elimination of intradomiciliary transmission has been reached. We should then aim at developing a theory of T. cruzi virulence evolution that we anticipate to provide an interesting enrichment of the general theory according to the specificities of transmission of this very generalist stercorarian trypanosome. We stress that many ecological data required to better understand selective pressures acting on vector and parasite populations are already available as they have been meticulously accumulated in the last century of field research. Although more specific information will surely be needed, an effective research strategy would be to integrate data into the conceptual and theoretical framework of evolutionary ecology and life-history evolution that provide the quantitative backgrounds necessary to understand and possibly anticipate adaptive responses to public health interventions.

5.
PLoS Negl Trop Dis ; 10(2): e0004427, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26867025

RESUMO

The effects of biodiversity on the transmission of infectious diseases now stand as a cornerstone of many public health policies. The upper Amazonia and Guyana shield are hot-spots of biodiversity that offer genuine opportunities to explore the relationship between the risk of transmission of Chagas disease and the diversity of its triatomine vectors. Over 730 triatomines were light-trapped in four geomorphological landscapes shaping French-Guiana, and we determined their taxonomic status and infection by Trypanosoma cruzi. We used a model selection approach to unravel the spatial and temporal variations in species abundance, diversity and infection. The vector community in French-Guiana is typically made of one key species (Panstrongylus geniculatus) that is more abundant than three secondary species combined (Rhodnius pictipes, Panstrongylus lignarius and Eratyrus mucronatus), and four other species that complete the assemblage. Although the overall abundance of adult triatomines does not vary across French-Guiana, their diversity increases along a coastal-inland gradient. These variations unravelled a non-monotonic relationship between vector biodiversity and the risk of transmission of Chagas disease, so that intermediate biodiversity levels are associated with the lowest risks. We also observed biannual variations in triatomine abundance, representing the first report of a biannual pattern in the risk of Chagas disease transmission. Those variations were highly and negatively correlated with the average monthly rainfall. We discuss the implications of these patterns for the transmission of T. cruzi by assemblages of triatomine species, and for the dual challenge of controlling Amazonian vector communities that are made of both highly diverse and mostly intrusive species.


Assuntos
Biodiversidade , Doença de Chagas/transmissão , Insetos Vetores/fisiologia , Triatominae/fisiologia , Animais , Doença de Chagas/epidemiologia , Feminino , Guiana Francesa/epidemiologia , Humanos , Insetos Vetores/classificação , Insetos Vetores/genética , Masculino , Estações do Ano , Triatominae/classificação , Triatominae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA