Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 49(1): 120-133.e9, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30005826

RESUMO

B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention.


Assuntos
Antígenos CD/genética , Expressão Gênica , Interleucina-10/biossíntese , Plasmócitos/imunologia , Animais , Antígenos CD/imunologia , Subpopulações de Linfócitos B/imunologia , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Interleucina-10/genética , Ativação Linfocitária , Masculino , Camundongos , Plasmócitos/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Salmonelose Animal/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Receptores Toll-Like/metabolismo , Regulação para Cima/genética , Vacinas/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
2.
Front Immunol ; 13: 826164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493448

RESUMO

Oncolytic Viruses (OVs) work through two main mechanisms of action: the direct lysis of the virus-infected cancer cells and the release of tumor antigens as a result of the viral burst. In this sc.enario, the OVs act as in situ cancer vaccines, since the immunogenicity of the virus is combined with tumor antigens, that direct the specificity of the anti-tumor adaptive immune response. However, this mechanism in some cases fails in eliciting a strong specific T cell response. One way to overcome this problem and enhance the priming efficiency is the production of genetically modified oncolytic viruses encoding one or more tumor antigens. To avoid the long and expensive process related to the engineering of the OVs, we have exploited an approach based on coating OVs (adenovirus and vaccinia virus) with tumor antigens. In this work, oncolytic viruses encoding tumor antigens and tumor antigen decorated adenoviral platform (PeptiCRAd) have been used as cancer vaccines and evaluated both for their prophylactic and therapeutic efficacy. We have first tested the oncolytic vaccines by exploiting the OVA model, moving then to TRP2, a more clinically relevant tumor antigen. Finally, both approaches have been investigated in tumor neo-antigens settings. Interestingly, both genetically modified oncolytic adenovirus and PeptiCRAd elicited T cells-specific anti-tumor responses. However, in vitro cross-representation experiments, showed an advantage of PeptiCRAd as regards the fast presentation of the model epitope SIINFEKL from OVA in an immunogenic rather than tolerogenic fashion. Here two approaches used as cancer oncolytic vaccines have been explored and characterized for their efficacy. Although the generation of specific anti-tumor T cells was elicited in both approaches, PeptiCRAd retains the advantage of being rapidly adaptable by coating the adenovirus with a different set of tumor antigens, which is crucial in personalized cancer vaccines clinical setting.


Assuntos
Vacinas Anticâncer , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Adenoviridae , Antígenos de Neoplasias , Humanos , Vírus Oncolíticos/genética , Peptídeos , Medicina de Precisão , Vacinas de Subunidades Antigênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA