Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(34): E8086-E8095, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076228

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are both voltage- and ligand-activated membrane proteins that contribute to electrical excitability and pace-making activity in cardiac and neuronal cells. These channels are members of the voltage-gated Kv channel superfamily and cyclic nucleotide-binding domain subfamily of ion channels. HCN channels have a unique feature that distinguishes them from other voltage-gated channels: the HCN channel pore opens in response to hyperpolarizing voltages instead of depolarizing voltages. In the canonical model of electromechanical coupling, based on Kv channels, a change in membrane voltage activates the voltage-sensing domains (VSD) and the activation energy passes to the pore domain (PD) through a covalent linker that connects the VSD to the PD. In this investigation, the covalent linkage between the VSD and PD, the S4-S5 linker, and nearby regions of spHCN channels were mutated to determine the functional role each plays in hyperpolarization-dependent activation. The results show that: (i) the S4-S5 linker is not required for hyperpolarization-dependent activation or ligand-dependent gating; (ii) the S4 C-terminal region (S4C-term) is not necessary for ligand-dependent gating but is required for hyperpolarization-dependent activation and acts like an autoinhibitory domain on the PD; (iii) the S5N-term region is involved in VSD-PD coupling and holding the pore closed; and (iv) spHCN channels have two voltage-dependent processes, a hyperpolarization-dependent activation and a depolarization-dependent recovery from inactivation. These results are inconsistent with the canonical model of VSD-PD coupling in Kv channels and elucidate the mechanism for hyperpolarization-dependent activation of HCN channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Ativação do Canal Iônico , Ouriços-do-Mar/química , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Domínios Proteicos , Ouriços-do-Mar/genética , Ouriços-do-Mar/metabolismo , Relação Estrutura-Atividade
2.
J Biol Chem ; 291(1): 371-81, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26559974

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Nucleotídeos Cíclicos/farmacologia , Canais de Potássio/química , Canais de Potássio/metabolismo , Regulação Alostérica/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Anisotropia , Elétrons , Fluorescência , Ativação do Canal Iônico/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Estrutura Terciária de Proteína , Termodinâmica
3.
J Biol Chem ; 286(17): 15535-42, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21383006

RESUMO

Many ion channels have been shown to be regulated by the membrane signaling phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here, we demonstrate that the binding of PIP(2) to SpIH, a sea urchin hyperpolarization-activated cyclic nucleotide-gated ion channel (HCN), has a dual effect: potentiation and inhibition. The potentiation is observed as a shift in the voltage dependence of activation to more depolarized voltages. The inhibition is observed as a reduction in the currents elicited by the partial agonist cGMP. These two effects were separable and arose from PIP(2) binding to two different regions. Deletion of the C-terminal region of SpIH removed PIP(2)-induced inhibition but not the PIP(2)-induced shift in voltage dependence. Mutating key positively charged amino acids in the C-terminal region adjacent to the membrane selectively disrupted PIP(2)-induced inhibition, suggesting a direct interaction between PIP(2) in the membrane and amino acids in the C-terminal region that stabilizes the closed state relative to the open state in HCN channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Fosfatidilinositol 4,5-Difosfato/farmacologia , Aminoácidos Acídicos , Animais , Sítios de Ligação , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/agonistas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio/agonistas , Ligação Proteica , Ouriços-do-Mar
4.
Nat Methods ; 6(7): 532-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525958

RESUMO

Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here we report that fluorescence resonance energy transfer (FRET) between a small fluorescent dye and a nickel ion bound to a dihistidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET, including the ability to measure the dynamics of close-range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this 'transition metal ion FRET' approach along with X-ray crystallography to determine the structural changes of the gating ring of the mouse hyperpolarization-activated cyclic nucleotide-regulated ion channel HCN2. Our results suggest a general model for the conformational switch in the cyclic nucleotide-binding site of cyclic nucleotide-regulated ion channels.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Conformação Proteica , Proteínas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cátions Bivalentes , Cristalografia por Raios X , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/química , Canais Iônicos/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Níquel/química , Peptídeos/química , Canais de Potássio , Ligação Proteica , Estrutura Secundária de Proteína
5.
Structure ; 15(6): 671-82, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17562314

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels regulate the spontaneous firing activity and electrical excitability of many cardiac and neuronal cells. The modulation of HCN channel opening by the direct binding of cAMP underlies many physiological processes such as the autonomic regulation of the heart rate. Here we use a combination of X-ray crystallography and electrophysiology to study the allosteric mechanism for cAMP modulation of HCN channels. SpIH is an invertebrate HCN channel that is activated fully by cAMP, but only partially by cGMP. We exploited the partial agonist action of cGMP on SpIH to reveal the molecular mechanism for cGMP specificity of many cyclic nucleotide-regulated enzymes. Our results also elaborate a mechanism for the allosteric conformational change in the cyclic nucleotide-binding domain and a mechanism for partial agonist action. These mechanisms will likely extend to other cyclic nucleotide-regulated channels and enzymes as well.


Assuntos
Canais de Potássio/química , Canais de Potássio/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , AMP Cíclico/química , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , DNA Complementar/genética , Relação Dose-Resposta a Droga , Feminino , Ligação de Hidrogênio , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ligantes , Microinjeções , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Oócitos/citologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/agonistas , Canais de Potássio/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Valina/metabolismo , Xenopus
6.
J Gen Physiol ; 121(6): 563-82, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12771192

RESUMO

Cyclic nucleotide-gated (CNG) channels belong to the P-loop-containing family of ion channels that also includes KcsA, MthK, and Shaker channels. In this study, we investigated the structure and rearrangement of the CNGA1 channel pore using cysteine mutations and cysteine-specific modification. We constructed 16 mutant channels, each one containing a cysteine mutation at one of the positions between 384 and 399 in the S6 region of the pore. By measuring currents activated by saturating concentrations of the full agonist cGMP and the partial agonists cIMP and cAMP, we show that mutating S6 residues to cysteine caused both favorable and unfavorable changes in the free energy of channel opening. The time course of cysteine modification with 2-aminoethylmethane thiosulfonate hydrochloride (MTSEA) was complex. For many positions we observed decreases in current activated by cGMP and concomitant increases in current activated by cIMP and cAMP. A model where modification affected both gating and permeation successfully reproduced the complex time course of modification for most of the mutant channels. From the model fits to the time course of modification for each mutant channel, we quantified the following: (a) the bimolecular rate constant of modification in the open state, (b) the change in conductance, and (c) the change in the free energy of channel opening for modification of each cysteine. At many S6 cysteines, modification by MTSEA caused a decrease in conductance and a favorable change in the free energy of channel opening. Our results are interpreted within the structural framework of the known structures of KcsA and MthK. We conclude that: (a) MTSEA modification affects both gating and permeation, (b) the open configuration of the pore of CNGA1 channels is consistent with the structure of MthK, and (c) the modification of S6 residues disrupts the helical packing of the closed channel, making it easier for channels to open.


Assuntos
Metanossulfonato de Etila/análogos & derivados , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Cisteína/genética , Metanossulfonato de Etila/farmacocinética , Humanos , Indicadores e Reagentes/farmacocinética , Canais Iônicos/química , Dados de Sequência Molecular , Oócitos , Técnicas de Patch-Clamp , Permeabilidade , Mutação Puntual , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA