Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38686818

RESUMO

Quantum-chemical subsystem and embedding methods require complex workflows that may involve multiple quantum-chemical program packages. Moreover, such workflows require the exchange of voluminous data that go beyond simple quantities, such as molecular structures and energies. Here, we describe our approach for addressing this interoperability challenge by exchanging electron densities and embedding potentials as grid-based data. We describe the approach that we have implemented to this end in a dedicated code, PyEmbed, currently part of a Python scripting framework. We discuss how it has facilitated the development of quantum-chemical subsystem and embedding methods and highlight several applications that have been enabled by PyEmbed, including wave-function theory (WFT) in density-functional theory (DFT) embedding schemes mixing non-relativistic and relativistic electronic structure methods, real-time time-dependent DFT-in-DFT approaches, the density-based many-body expansion, and workflows including real-space data analysis and visualization. Our approach demonstrates, in particular, the merits of exchanging (complex) grid-based data and, in general, the potential of modular software development in quantum chemistry, which hinges upon libraries that facilitate interoperability.

2.
J Phys Chem A ; 127(43): 9139-9148, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37871170

RESUMO

While CCSD(T) is often considered the "gold standard" of computational chemistry, the scaling of its computational cost as N7 limits its applicability for large and complex molecular systems. In this work, we apply the density-based many-body expansion [ Int. J. Quantum Chem. 2020, 120, e26228] in combination with CCSD(T). The accuracy of this approach is assessed for neutral, protonated, and deprotonated water hexamers, as well as (H2O)16 and (H2O)17 clusters. For the neutral water clusters, we find that already with a density-based two-body expansion, we are able to approximate the supermolecular CCSD(T) energies within chemical accuracy (4 kJ/mol). This surpasses the accuracy that is achieved with a conventional, energy-based three-body expansion. We show that this accuracy can be maintained even when approximating the electron densities using Hartree-Fock instead of using coupled-cluster densities. The density-based many-body expansion thus offers a simple, resource-efficient, and highly parallelizable approach that makes CCSD(T)-quality calculations feasible where they would otherwise be prohibitively expensive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA