Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Phytother Res ; 25(3): 444-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20737656

RESUMO

Justicia pectoralis (Acanthaceae) is used as an antiinflammatory, antimicrobial and bronchodilator, and its extract exerts an anxiolytic-like effect profile in animal models. This work presents the behavioral effects of an aqueous standardized extract of Justicia pectoralis (SEJP) in animal models, such as the elevated plus maze (EPM), light/dark, open field, rota rod and pentobarbital sleep time. The extract was administered intragastrically to male mice at single doses of 50, 100 and 200 mg/kg, while diazepam 1 or 2 mg/kg was used as a standard drug and flumazenil 2.5 mg/kg was used to evaluate the participation of benzodiazepinic receptors. The results showed that, similar to diazepam (1 mg/kg), SEJP significantly modified all the observed parameters in the EPM test, without altering the general motor activity in the open field, rota rod and pentobarbital sleep time tests. Flumazenil reversed not only the diazepam effect but also the SEJP effect. In the same way, all doses of SEJP increased the time of permanence in the light box in the light/dark test. The results showed that SEJP presented an anxiolytic-like effect, disproving sedative effects.


Assuntos
Acanthaceae/química , Ansiolíticos/farmacologia , Extratos Vegetais/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos
2.
Int J Neurosci ; 120(12): 739-45, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20964556

RESUMO

Antiretroviral therapy has revolutionized the treatment of the human immunodeficiency virus because it has improved the clinical outcomes of patients. It is essential that these drugs cross the blood-brain barrier, since the virus is present in the central nervous system (CNS). Efavirenz passes through this barrier satisfactorily and can reduce the deleterious central effects of the human immunodeficiency virus. However, patients treated with efavirenz have been observed to experience psychiatric symptoms such as mania, depression, suicidal thoughts, psychosis, and hallucinations. The aim of this review is to describe the pharmacokinetic and pharmacodynamic properties of efavirenz and its major neuropsychiatric symptoms and the neurochemical pathways associated with these changes in the CNS. The databases Medline and Lilacs were used to search for review articles and preclinical and clinical research articles published from January 1996 to 2010. The search terms used were efavirenz, central nervous system, neuropsychiatry, neurotransmitters, adverse effects, and neurochemistry. Subject categories considered included effects on viral replication, pharmacokinetic and pharmacodynamic properties of efavirenz, and neuropsychiatric adverse effects including time course, duration, and probable mechanisms involved. The mechanisms involved in these changes include interference with cytochrome P450 enzymes, cytokines, tryptophan-2-3-dioxygenase, and brain creatine kinase.


Assuntos
Complexo AIDS Demência/tratamento farmacológico , Fármacos Anti-HIV/efeitos adversos , Benzoxazinas/efeitos adversos , Encéfalo/efeitos dos fármacos , Transtornos Neurocognitivos/induzido quimicamente , Alcinos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Benzoxazinas/química , Benzoxazinas/farmacocinética , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Ciclopropanos , Humanos , Transtornos Neurocognitivos/enzimologia , Transtornos Neurocognitivos/fisiopatologia
3.
Behav Brain Res ; 383: 112487, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31987932

RESUMO

Despite recent advances, current antidepressants have considerable limitations: late onset of action and the high profile of refractoriness. Biomedical research with natural products has gained growing interest in the last years, and had provide useful candidates for new antidepressants. Riparins are a group of natural alkamides obtained from Aniba riparia, which had marked neuroactive effects, mainly as antidepressant and antinociceptive agents. We made modifications of the basic structure of riparins, originating a synthetic alkamide, also known as riparin IV (RipIV). RipIV demonstrated a superior analgesic effect than its congeners and a marked antidepressant-like effect. However, the basic mechanism for the central effects of RipIV remains unknown. Here, we aimed to investigate the participation of monoaminergic neurotransmission targets in the antidepressant-like effects of RipIV. To do this, we applied a combined approach of experimental (classical pharmacology and neurochemistry) and computer-aided techniques. Our results demonstrated that RipIV presented antidepressant- and anxiolytic-like effects without modifying locomotion and motor coordination of mice. Also, RipIV increased brain monoamines and their metabolite levels. At the higher dose (100 mg/kg), RipIV increased serotonin concentrations in all studied brain areas, while at the lower one (50 mg/kg), it increased mainly dopamine and noradrenaline levels. When tested with selective receptor antagonists, RipIV antidepressant effect showed dependence of the activation of multiple targets, including D1 and D2 dopamine receptors, 5-HT2A/2, 5-HT3 receptors and α2 adrenergic receptors. Molecular docking demonstrated favorable binding conformation and affinity of RipIV to monoamine oxidase B (MAO-B), serotonin transporter (SERT), α1 receptor, D2 receptor, dopamine transporter (DAT) and at some extent GABA-A receptor. RipIV also presented a computationally predicted favorable pharmacokinetic profile. Therefore, this study demonstrated the involvement of monoaminergic targets in the mechanism of RipIV antidepressant-like action, and provide evidence of it as a promising new antidepressant.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Monoaminoxidase/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Tiramina/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Bupropiona/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fluoxetina/farmacologia , Imipramina/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de Serotonina/metabolismo , Receptores 5-HT2 de Serotonina/efeitos dos fármacos , Receptores 5-HT2 de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Tiramina/farmacologia
4.
Neurosci Lett ; 419(3): 253-7, 2007 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-17499921

RESUMO

This work was designed to study the influence of drugs during seizures and status epilepticus (SE) induced by pilocarpine and mortality in adult rats. Glutamate (10 and 20 mg/kg), N-methyl-d-aspartate (NMDA, 5 and 10 mg/kg), ketamine (1.5 and 2.0 mg/kg), gabapentin (200 and 250 mg/kg), phenobarbital (50 and 100 mg/kg) and vigabatrin (250 and 500 mg/kg) were administered intraperitoneally, 30 min prior to pilocarpine (400 mg/kg, i.p.). The animals were observed (24 h) to determine: number of peripheral cholinergic signs, tremors, stereotyped movements, seizures, SE, latency to first seizure and number of deaths after pilocarpine treatment. NMDA and glutamate had pro-convulsive effects in both doses tested. Smaller and higher doses of these drugs no protected and increased pilocarpine-induced seizures and/or mortality. Gabapentin, vigabatrin, phenobarbital and ketamine protected against seizures and increased the latency to first seizure. Thus, these results suggest that caution should be taken in the selection of pharmacotherapy and dosages for patients with seizures and SE because of the possibility of facility the convulsive process toxicity, SE and the mortality of adult animals in this seizures model that is similar temporal lobo epilepsy in humans.


Assuntos
Anticonvulsivantes/farmacologia , Receptores de GABA/efeitos dos fármacos , Receptores de Neurotransmissores/efeitos dos fármacos , Convulsões/fisiopatologia , Estado Epiléptico/fisiopatologia , Aminas/farmacologia , Animais , Ácidos Cicloexanocarboxílicos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Gabapentina , Ácido Glutâmico/farmacologia , Glutamina/metabolismo , Ketamina/farmacologia , Masculino , Agonistas Muscarínicos/toxicidade , N-Metilaspartato/farmacologia , Fenobarbital/farmacologia , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Vigabatrina/farmacologia , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
5.
Neurosci Lett ; 408(2): 79-83, 2006 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17011125

RESUMO

This work was designed to study the influence of drugs during seizures and status epilepticus (SE) induced by pilocarpine and mortality in adult rats. Fluoxetine (10 and 20 mg/kg), NMDA (N-methyl-D-aspartate, 10 and 20 mg/kg), amitriptyline (25 and 50 mg/kg), ketamine (0.5 and 1.0 mg/kg), gabapentin (100 and 150 mg/kg) and pimozide (10 and 20 mg/kg) were administered intraperitoneally, 30 min prior to pilocarpine (400mg/kg, s.c.). The animals were observed (24h) to determine: number of peripheral cholinergic signs, tremors, stereotyped movements, seizures, SE, latency to first seizure and number of deaths after pilocarpine treatment. Fluoxetine, amitriptyline, NMDA, and pimozide had proconvulsant effects in both doses tested. Smaller and higher doses of these drugs no protected and increased pilocarpine-induced seizures and/or mortality. Gabapentin and ketamine protected against seizures and reduced the latency to first seizure. Thus, these results suggest that caution should be taken in the selection of pharmacotherapy and dosages for patients with epilepsy because of the possibility of potentiating convulsive process toxicity.


Assuntos
Pilocarpina/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Aminas/uso terapêutico , Amitriptilina/uso terapêutico , Animais , Antidepressivos de Segunda Geração/uso terapêutico , Antidepressivos Tricíclicos/uso terapêutico , Antipsicóticos/uso terapêutico , Ácidos Cicloexanocarboxílicos/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Fluoxetina/uso terapêutico , Gabapentina , Humanos , Ketamina/uso terapêutico , Masculino , Agonistas Muscarínicos/farmacologia , N-Metilaspartato/uso terapêutico , Pimozida/uso terapêutico , Ratos , Convulsões/mortalidade , Estado Epiléptico/mortalidade , Ácido gama-Aminobutírico/uso terapêutico
6.
Neurosci Lett ; 399(1-2): 76-8, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16481111

RESUMO

Experimental manipulations suggest that in vivo administration of cholinergic agonists or inhibitors of acetylcholinesterase (AChE) increases the concentration of acetylcholine. Biochemical studies have proposed a role for AChE in brain mechanisms responsible by development to status epilepticus (SE) induced by pilocarpine. The present study was aimed at investigating the changes in AChE activities in hippocampus, striatum and frontal cortex of adult rats after pilocarpine-induced SE. The control group was treated with 0.9% saline (s.c., control group) and another group received pilocarpine (400 mg/kg, s.c.). Both groups were sacrificed 1 h after treatment. The results have shown that pilocarpine administration and resulting SE produced a significant decrease in the AChE activity in the hippocampus (63%), striatum (35%) and frontal cortex (27%) of adult rats. Our results demonstrated a direct evidence of a decrease in the activity of the AChE in rat brain regions during seizure activity that could be responsible by regulation of acetylcholine levels during the establishment of SE induced by pilocarpine.


Assuntos
Acetilcolinesterase/metabolismo , Corpo Estriado/enzimologia , Lobo Frontal/enzimologia , Hipocampo/enzimologia , Pilocarpina , Estado Epiléptico/enzimologia , Animais , Masculino , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
7.
Neurosci Lett ; 408(2): 84-8, 2006 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17011127

RESUMO

This work was designed to study the influence of drugs during seizures and status epilepticus (SE) induced by pilocarpine and mortality in adult rats. Morphine (0.1 and 0.2 mg/kg), SCH 23390 (0.1 and 0.2 mg/kg), haloperidol (5 and 10mg/kg) and lithium (30 and 60 mg/kg) were administered intraperitoneally (i.p.), 30 min before to pilocarpine (400 mg/kg, s.c.). The animals were observed (24 h) to determine: number of peripheral cholinergic signs, tremors, stereotyped movements, seizures, SE, latency to first seizure and number of deaths after pilocarpine treatment. Morphine and haloperidol had proconvulsant effects in both doses tested. Smaller and higher doses of these drugs no protected and increased pilocarpine-induced seizures, SE and/or mortality. SCH 23390 protected against seizures, increased the latency to first seizure and reduced the mortality of the animals treated with pilocarpine Theses results suggest that dopamine receptor system receptor subtypes exert opposite functions on the regulation of convulsive activity. The morphine is proconvulsant in lower doses. The opioids in high doses tested exert an action proconvulsant during the establishment of epileptic activity induce by pilocarpine. The lithium no protected the animals against seizures induced by pilocarpine and is used which a model of epilepsy associated with lower doses of pilocarpine in several studies, suggesting absence of the effect anticonvulsants in rodents.


Assuntos
Pilocarpina/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Analgésicos Opioides/uso terapêutico , Animais , Antimaníacos/uso terapêutico , Antagonistas de Dopamina/uso terapêutico , Haloperidol/uso terapêutico , Cloreto de Lítio/uso terapêutico , Masculino , Morfina/uso terapêutico , Agonistas Muscarínicos/farmacologia , Ratos , Convulsões/mortalidade , Estado Epiléptico/mortalidade
8.
Neurosci Lett ; 383(1-2): 165-70, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15876489

RESUMO

Behavioural changes, muscarinic and dopaminergic receptors density and levels of monoamines were measured in striatum of rats after pilocarpine-induced status epilepticus (SE). Wistar rats at the age of 21 days were treated with pilocarpine (400mg/kg; subcutaneously) whilst the control group was treated with 0.9% saline (s.c.). Both groups were sacrificed 1h following the treatment. SE induced a muscarinic receptor downregulation of 64% in pilocarpine group. This effect was also observed to be 57% in D(1) and 32% in D(2). In the dissociation constant (K(d)) values in muscarinic and D(1) receptor no alterations were verified. On the other hand, the K(d) value for D(2) was observed to increase 41%. High performance liquid chromatography determinations showed 63, 35, 77 and 64% decreases in dopamine, 3-methoxy-phenylacetic acid, serotonin and 5-hydroxyindoleacetic acid contents, respectively. The homovanilic acid level was verified to increase 119%. The noradrenaline content was unaltered. A direct evidence of monoamine levels alterations can be verified during seizure activity and receptor density changes appear to occur in an accentuated way in immature brain during the estabilishment of SE induced by pilocarpine.


Assuntos
Monoaminas Biogênicas/metabolismo , Corpo Estriado/efeitos dos fármacos , Pilocarpina , Receptores Dopaminérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Estado Epiléptico/induzido quimicamente , Análise de Variância , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Benzazepinas/farmacocinética , Corpo Estriado/metabolismo , Antagonistas de Dopamina/farmacocinética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , N-Metilescopolamina/farmacocinética , Ensaio Radioligante/métodos , Ratos , Ratos Wistar , Receptores Dopaminérgicos/classificação , Receptores Muscarínicos/classificação , Estado Epiléptico/metabolismo , Trítio/farmacocinética
9.
Neurosci Lett ; 385(3): 184-8, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-15967574

RESUMO

Levetiracetam (LEV) is a new antiepileptic drug effective as adjunctive therapy for partial seizures. It displays a unique pharmacological profile against experimental models of seizures, including pilocarpine-induced seizures in rodents. Aiming to clarify if anticonvulsant activity of LEV occurs due to cholinergic alterations, adult male mice received LEV injections before cholinergic agonists' administration. Pretreatment with LEV (30-200 mg/kg, i.p.) increased the latencies of seizures, but decreased status epilepticus and death on the seizure model induced by pilocarpine, 400 mg/kg, s.c. (P400). LEV (LEV200, 200 mg/kg, i.p.) pretreatment also reduced the intensity of tremors induced by oxotremorine (0.5 mg/kg, i.p). [3H]-N-methylscopolamine-binding assays in mice hippocampus showed that LEV200 pretreatment reverts the downregulation on muscarinic acetylcholine receptors (mAChR), induced by P400 administration, bringing back these density values to control ones (0.9% NaCl, i.p.). However, subtype-specific-binding assays revealed that P400- and LEV-alone treatments result in M1 and M2 subtypes decrease, respectively. The agonist-like behavior of LEV on the inhibitory M2 mAChR subtype, observed in this work, could contribute to explain the reduction on oxotremorine-induced tremors and the delay on pilocarpine-induced seizures, by an increase in the attenuation of neuronal activity mediated by the M1 receptors.


Assuntos
Anticonvulsivantes/uso terapêutico , Hipocampo/efeitos dos fármacos , Piracetam/análogos & derivados , Receptores Muscarínicos/efeitos dos fármacos , Convulsões/prevenção & controle , Animais , Convulsivantes/toxicidade , Modelos Animais de Doenças , Hipocampo/metabolismo , Levetiracetam , Masculino , Camundongos , Agonistas Muscarínicos/farmacologia , Oxotremorina/farmacologia , Pilocarpina/toxicidade , Piracetam/uso terapêutico , Receptores Muscarínicos/metabolismo , Convulsões/induzido quimicamente
10.
Neurosci Lett ; 370(2-3): 196-200, 2004 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-15488322

RESUMO

Pilocarpine-induced status epilepticus (SE) is an useful model to study the involvement of neurotransmitter systems as epileptogenesis modulators. Some researches have shown that pharmacological manipulations in dopaminergic, serotonergic, and noradrenergic systems alter the occurrence of pilocarpine-induced SE. The control group was treated with 0.9% saline (control group, s.c.). Another group of rats received pilocarpine (400mg/kg, s.c.) and both groups were sacrificed 24 h after the treatment. This work was performed to determine the alterations in monoamine levels (dopamine (DA), serotonin (5-HT) and norepinephrine (NE)) and their metabolites (3,4-hydroxyphenylacetic acid (DOPAC), homovanilic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA)) after pilocarpine-induced SE in hippocampus and frontal cortex of adult rats. The monoamines and their metabolites were determined by reverse-phase high-performance liquid chromatography with electrochemical detection. DA and 5-HIAA concentrations were not altered in the hippocampus of the pilocarpine group, but in the same group the 5-HT (160%), DOPAC (316%) and HVA (21%) levels increased, whereas, the NE (47%) content declined. For the frontal cortex determinations, there was an increase of 20 and 72% in DA and DOPAC levels, respectively, and a decrease in NE (32%), 5-HT (33%) and 5-HIAA (19%) concentrations, but HVA content remained unaltered. These results indicate that pilocarpine-induced SE can alter monoamine levels in different ways depending on the brain area studied, suggesting that different mechanisms are involved.


Assuntos
Monoaminas Biogênicas/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/metabolismo , Análise de Variância , Animais , Química Encefálica/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica/métodos , Masculino , Pilocarpina , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA