Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Syst Biol ; 8: 586, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22669614

RESUMO

All cells must detect and respond to changes in their environment, often through changes in gene expression. The yeast pheromone pathway has been extensively characterized, and is an ideal system for studying transcriptional regulation. Here we combine computational and experimental approaches to study transcriptional regulation mediated by Ste12, the key transcription factor in the pheromone response. Our mathematical model is able to explain multiple counterintuitive experimental results and led to several novel findings. First, we found that the transcriptional repressors Dig1 and Dig2 positively affect transcription by stabilizing Ste12. This stabilization through protein-protein interactions creates a large pool of Ste12 that is rapidly activated following pheromone stimulation. Second, we found that protein degradation follows saturating kinetics, explaining the long half-life of Ste12 in mutants expressing elevated amounts of Ste12. Finally, our model reveals a novel mechanism for robust perfect adaptation through protein-protein interactions that enhance complex stability. This mechanism allows the transcriptional response to act on a shorter time scale than upstream pathway activity.


Assuntos
Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Feromônios/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Modelos Genéticos , Mutação , Feromônios/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Yeast ; 29(12): 519-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172645

RESUMO

Ideal reporter genes for temporal transcription programmes have short half-lives that restrict their detection to the window in which their transcripts are present and translated. In an effort to meet this criterion for reporters of transcription in individual living cells, we adapted the ubiquitin fusion strategy for programmable N-end rule degradation to generate an N-degron version of green fluorescent protein (GFP) with a half-life of ~7 min. The GFP variant we used here (designated GFP*) has excellent fluorescence brightness and maturation properties, which make the destabilized reporter well suited for tracking the induction and attenuation kinetics of gene expression in living cells. These attributes are illustrated by its ability to track galactose- and pheromone-induced transcription in S. cerevisiae. We further show that the fluorescence measurements using the short-lived N-degron GFP* reporter gene accurately predict the transient mRNA profile of the prototypical pheromone-induced FUS1 gene.


Assuntos
Genes Reporter , Proteínas de Fluorescência Verde/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Galactose/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Meia-Vida , Cinética , Proteínas de Membrana/genética , Feromônios/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Biol Cell ; 26(18): 3343-58, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26179918

RESUMO

Mitogen-activated protein kinase (MAPK) pathways control many cellular processes, including differentiation and proliferation. These pathways commonly activate MAPK isoforms that have redundant or overlapping function. However, recent studies have revealed circumstances in which MAPK isoforms have specialized, nonoverlapping roles in differentiation. The mechanisms that underlie this specialization are not well understood. To address this question, we sought to establish regulatory mechanisms that are unique to the MAPK Fus3 in pheromone-induced mating and chemotropic fate transitions of the budding yeast Saccharomyces cerevisiae. Our investigations reveal a previously unappreciated role for inactive Fus3 as a potent negative regulator of pheromone-induced chemotropism. We show that this inhibitory role is dependent on inactive Fus3 binding to the α-subunit of the heterotrimeric G-protein. Further analysis revealed that the binding of catalytically active Fus3 to the G-protein is required for gradient tracking and serves to suppress cell-to-cell variability between mating and chemotropic fates in a population of pheromone-responding cells.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Feromônios/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA