Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Topogr ; 37(3): 475-478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37195492

RESUMO

Stroke recovery trajectories vary substantially. The need for tracking and prognostic biomarkers in stroke is utmost for prognostic and rehabilitative goals: electroencephalography (EEG) advanced signal analysis may provide useful tools toward this aim. EEG microstates quantify changes in configuration of neuronal generators of short-lasting periods of coordinated synchronized communication within large-scale brain networks: this feature is expected to be impaired in stroke. To characterize the spatio-temporal signatures of EEG microstates in stroke survivors in the acute/subacute phase, EEG microstate analysis was performed in 51 first-ever ischemic stroke survivors [(28-82) years, 24 with right hemisphere (RH) lesion] who underwent a resting-state EEG recording in the acute and subacute phase (from 48 h up to 42 days after the event). Microstates were characterized based on 4 parameters: global explained variance (GEV), mean duration, occurrences per second, and percentage of coverage. Wilcoxon Rank Sum tests were performed to compare features of each microstate across the two groups [i.e., left hemisphere (LH) and right hemisphere (RH) stroke survivors]. The canonical microstate map D, characterized by a mostly frontal topography, displayed greater GEV, occurrence per second, and percentage of coverage in LH than in RH stroke survivors (p < 0.05). The EEG microstate map B, with a left-frontal to right-posterior topography, and F, with an occipital-to-frontal topography, exhibited a greater GEV in RH than in LH stroke survivors (p = 0.015). EEG microstates identified specific topographic maps which characterize stroke survivors' lesioned hemisphere in the acute and early subacute phase. Microstate features offer an additional tool to identify different neural reorganization.


Assuntos
Eletroencefalografia , Acidente Vascular Cerebral , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Prognóstico
2.
J Neuroeng Rehabil ; 19(1): 69, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790978

RESUMO

BACKGROUND: Brain-computer interfaces (BCIs) are systems capable of translating human brain patterns, measured through electroencephalography (EEG), into commands for an external device. Despite the great advances in machine learning solutions to enhance the performance of BCI decoders, the translational impact of this technology remains elusive. The reliability of BCIs is often unsatisfactory for end-users, limiting their application outside a laboratory environment. METHODS: We present the analysis on the data acquired from an end-user during the preparation for two Cybathlon competitions, where our pilot won the gold medal twice in a row. These data are of particular interest given the mutual learning approach adopted during the longitudinal training phase (8 months), the long training break in between the two events (1 year) and the demanding evaluation scenario. A multifaceted perspective on long-term user learning is proposed: we enriched the information gathered through conventional metrics (e.g., accuracy, application performances) by investigating novel neural correlates of learning in different neural domains. RESULTS: First, we showed that by focusing the training on user learning, the pilot was capable of significantly improving his performance over time even with infrequent decoder re-calibrations. Second, we revealed that the analysis of the within-class modifications of the pilot's neural patterns in the Riemannian domain is more effective in tracking the acquisition and the stabilization of BCI skills, especially after the 1-year break. These results further confirmed the key role of mutual learning in the acquisition of BCI skills, and particularly highlighted the importance of user learning as a key to enhance BCI reliability. CONCLUSION: We firmly believe that our work may open new perspectives and fuel discussions in the BCI field to shift the focus of future research: not only to the machine learning of the decoder, but also in investigating novel training procedures to boost the user learning and the stability of the BCI skills in the long-term. To this end, the analyses and the metrics proposed could be used to monitor the user learning during training and provide a marker guiding the decoder re-calibration to maximize the mutual adaptation of the user to the BCI system.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia/métodos , Humanos , Aprendizado de Máquina , Reprodutibilidade dos Testes
3.
Neuroimage ; 227: 117655, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333318

RESUMO

Different cortical regions respond with distinct rhythmic patterns of neural oscillations to Transcranial Magnetic Stimulation (TMS). We investigated natural frequencies induced by TMS in left and right homologous dorsolateral prefrontal cortices (DLPFC) and related hemispheric differences. In 12 healthy young adults, single-pulse TMS was delivered in different blocks close to F3 and F4 channels to target left and right DLPFC. An occipital site near PO3 was stimulated as control. TMS-related spectral perturbation analyses were performed on recorded EEG data. A widespread unspecific increase in theta power was observed for all stimulation sites. However, occipital TMS induced greater alpha activity and a 10.58 Hz natural frequency, while TMS over the left and right DLPFC resulted in similar beta band modulations and a natural frequency of 18.77 and 18.5 Hz, respectively. In particular, TMS-related specific increase in beta activity was stronger for the right than the left DLPFC. The right DLPFC is more specifically tuned to its natural beta frequency when it is directly stimulated by TMS than with TMS over the left counterpart (or a posterior region), while the left DLPFC increases its beta activity more similarly irrespective of whether it is directly stimulated or through right homologous stimulation. These results yield important implications for both basic neuroscience research on inter-hemispheric prefrontal interactions and clinical applications.


Assuntos
Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
4.
Eur Arch Psychiatry Clin Neurosci ; 271(1): 199-210, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33237361

RESUMO

Fibromyalgia syndrome (FMS) is a complex pain disorder, characterized by diffuse pain and cognitive disturbances. Abnormal cortical oscillatory activity may be a promising biomarker, encouraging non-invasive neurostimulation techniques as a treatment. We aimed to modulate abnormal slow cortical oscillations by delivering transcranial alternating current stimulation (tACS) and physiotherapy to reduce pain and cognitive symptoms. This was a double-blinded, randomized, crossover trial conducted between February and September 2018 at the Rehabilitation Unit of a teaching Hospital (NCT03221413). Participants were randomly assigned to tACS or random noise stimulation (RNS), 5 days/week for 2 weeks followed by ad hoc physiotherapy. Clinical and cognitive assessments were performed at T0 (baseline), T1 (after stimulation), T2 (1 month after stimulation). Electroencephalogram (EEG) spectral topographies recorded from 15 participants confirmed slow-rhythm prevalence and provided tACS tailored stimulation parameters and electrode sites. Following tACS, EEG alpha1 ([8-10] Hz) activity increased at T1 (p = 0.024) compared to RNS, pain symptoms assessed by Visual Analog Scale decreased at T1 (T1 vs T0 p = 0.010), self-reported cognitive skills and neuropsychological scores improved both at T1 and T2 (Patient-Reported Outcomes in Cognitive Impairment, T0-T2, p = 0.024; Everyday memory questionnaire, T1 compared to RNS, p = 0.012; Montréal Cognitive Assessment, T0 vs T1, p = 0.048 and T0 vs T2, p = 0.009; Trail Making Test B T0-T2, p = 0.034). Psychopathological scales and other neuropsychological scores (Trail Making Test-A; Total Phonemic Fluency; Hopkins Verbal Learning Test-Revised; Rey-Osterrieth Complex Figure) improved both after tACS and RNS but earlier improvements (T1) were registered only after tACS. These results support tACS coupled with physiotherapy in treating FMS cognitive symptoms, pain and subclinical psychopathology.


Assuntos
Fibromialgia/terapia , Modalidades de Fisioterapia , Estimulação Transcraniana por Corrente Contínua , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia , Feminino , Fibromialgia/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Dor
5.
Entropy (Basel) ; 23(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064732

RESUMO

Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.

6.
Neurol Sci ; 40(7): 1465-1468, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30895398

RESUMO

BACKGROUND: Pisa syndrome is a lateral deviation of the trunk described in Parkinson's disease (PD). Its etiology is still unknown; advanced muscular signal analysis techniques, such as inter-muscular coherence, could help clarifying its pathophysiology and suggest therapeutic strategies. METHODS: Fourteen idiopathic PD subjects with a lateral deviation of the trunk of at least 10° were included. Electromyographic (EMG) signal was recorded from bilateral thoracic, and lumbar para-spinal and obliqui externi muscles. The synchronization between EMG right and left side signals was quantified using the magnitude-squared coherence function. RESULTS: In our sample, coherence (range 0-1) did not exceed 0.3, which indicates a lack of intra-muscular coherence. CONCLUSION: This finding is suggestive of a defective muscular fine-tuning, which has been associated with bradykinesia. These data support the hypothesis of PS as a clinical sign of bradykinesia, impacting on therapeutic and rehabilitative options.


Assuntos
Músculo Esquelético/fisiopatologia , Doença de Parkinson/fisiopatologia , Postura/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Eletromiografia , Feminino , Humanos , Hipocinesia/fisiopatologia , Masculino
7.
Neural Plast ; 2018: 8105480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780410

RESUMO

Background: Bilateral arm training (BAT) has shown promise in expediting progress toward upper limb recovery in chronic stroke patients, but its neural correlates are poorly understood. Objective: To evaluate changes in upper limb function and EEG power after a robot-assisted BAT in chronic stroke patients. Methods: In a within-subject design, seven right-handed chronic stroke patients with upper limb paresis received 21 sessions (3 days/week) of the robot-assisted BAT. The outcomes were changes in score on the upper limb section of the Fugl-Meyer assessment (FM), Motricity Index (MI), and Modified Ashworth Scale (MAS) evaluated at the baseline (T0), posttraining (T1), and 1-month follow-up (T2). Event-related desynchronization/synchronization were calculated in the upper alpha and the beta frequency ranges. Results: Significant improvement in all outcomes was measured over the course of the study. Changes in FM were significant at T2, and in MAS at T1 and T2. After training, desynchronization on the ipsilesional sensorimotor areas increased during passive and active movement, as compared with T0. Conclusions: A repetitive robotic-assisted BAT program may improve upper limb motor function and reduce spasticity in the chronically impaired paretic arm. Effects on spasticity were associated with EEG changes over the ipsilesional sensorimotor network.


Assuntos
Encéfalo/fisiopatologia , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Idoso , Doença Crônica/reabilitação , Eletroencefalografia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Robótica , Resultado do Tratamento
8.
Brain Topogr ; 29(2): 322-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26590568

RESUMO

In patients without a behavioral response, non-invasive techniques and new methods of data analysis can complement existing diagnostic tools by providing a method for detecting covert signs of residual cognitive function and awareness. The aim of this study was to investigate the brain oscillatory activities synchronized by single-pulse transcranial magnetic stimulation (TMS) delivered over the primary motor area in the time-frequency domain in patients with the unresponsive wakefulness syndrome or in a minimally conscious state as compared to healthy controls. A time-frequency analysis based on the wavelet transform was used to characterize rapid modifications of oscillatory EEG rhythms induced by TMS in patients as compared to healthy controls. The pattern of EEG changes in the patients differed from that of healthy controls. In the controls there was an early synchronization of slow waves immediately followed by a desynchronization of alpha and beta frequency bands over the frontal and centro-parietal electrodes, whereas an opposite early synchronization, particularly over motor areas for alpha and beta and over the frontal and parietal electrodes for beta power, was seen in the patients. In addition, no relevant modification in slow rhythms (delta and theta) after TMS was noted in patients. The clinical impact of these findings could be relevant in neurorehabilitation settings for increasing the awareness of these patients and defining new treatment procedures.


Assuntos
Sincronização Cortical/fisiologia , Potencial Evocado Motor/fisiologia , Estado Vegetativo Persistente/reabilitação , Estimulação Magnética Transcraniana/métodos , Vigília/fisiologia , Adulto , Idoso , Análise de Variância , Biofísica , Ondas Encefálicas/fisiologia , Eletroencefalografia , Feminino , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo
9.
Artif Organs ; 40(2): 169-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26147999

RESUMO

Hemodilution during cardiopulmonary bypass (CPB) is widely used to decrease transfusion and improve microcirculation but has drawbacks, such as diminished hemoglobin levels. Among others, reduced brain oxygenation accounts for neurological adverse outcomes after CPB. The aim of the present study was to ascertain if and how continuous electroencephalogram (EEG) during CPB is affected by hematocrit level and what should be the minimum value to avoid significant frequency band shifts on the EEG. A comparative study design was used with 16 subjects undergoing elective mitral valve repair/replacement. EEG was continuously recorded during the surgical procedure (from anesthesia induction to 20 min after CPB end). Data were marked at relevant time points (T0: before CPB start; T1: after 30 min from CPB beginning; T2: at CPB end), and the following 2 min EEG analyzed with a fast Fourier transform to obtain relative power for delta, theta, alpha, and beta bands. A general linear model for repeated measure was used to study interactions of time (T0, T1, and T2, EEG frequency band, and topographical distribution. The relative powers for each electrode were calculated and represented using topographic maps. Power spectrum differences between time points (T2-T1; T2-T0; T1-T0) were calculated for each electrode, and differences >10%, considered indicative of neuronal sufferance, were included in further analysis. Cutoff hemoglobin values that maximize the proportion of correctly classified EEG band shifts were obtained by previous definition were obtained. At T2, diffuse EEG slowing in delta and theta bands was detected; a minor slowing over anterior regions was evident at T1 for the theta band. Decrements in EEG power greater than 10% were detected only for the delta band at T2. Hemoglobin concentration levels at which no slowing increase was evident were 9.4 mg/dL (Ht: 28.2%) at T1 and 9.2 mg/dL (Ht: 27.6%) at T2. EEG burst-suppression pattern related to a lesser degree of slowing at T2. In conclusion, we propose hemoglobin cutoff levels that prevent EEG slowing indicative of neuronal sufferance. In addition, burst-suppression EEG patterns offer higher central nervous system protection as measured on EEG.


Assuntos
Ponte Cardiopulmonar , Eletroencefalografia , Hemoglobinas/análise , Idoso , Ponte Cardiopulmonar/métodos , Eletroencefalografia/métodos , Feminino , Hematócrito , Hemodiluição/métodos , Humanos , Masculino , Pessoa de Meia-Idade
10.
Brain Topogr ; 28(2): 352-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24838817

RESUMO

A better understanding of cortical modifications related to movement preparation and execution after robot-assisted training could aid in refining rehabilitation therapy protocols for stroke patients. Electroencephalography (EEG) modifications of cortical activity in healthy subjects were evaluated using time-frequency event-related EEG and task-related coherence (TRCoh). Twenty-one channel EEG was recorded in eight subjects during protocols of active, passive, and imagined movements. The subjects performed robot-assisted tasks using the Bi-Manu-Track robot-assisted arm trainer. We applied time-frequency event-related synchronization/desynchronization (ERS/ERD) and TRCoh approaches to investigate where movement-related decreases in power were localized and to study the functional relationships between areas. Our results showed ERD of sensorimotor (SM) area over the contralateral side before the movement and bilateral ERD during execution of the movement. ERD during passive movements was similar in topography to that observed during voluntary movements, but without pre-movement components. No significant difference in time course ERD was observed among the three types of movement over the two SM areas. The TRCoh topography was similar for active and imagined movement; before passive movement, the frontal regions were uncoupled from the SM regions and did not contribute to task performance. This study suggests new perspectives for the evaluation of brain oscillatory activity and the neurological assessment of motor performance by means of quantitative EEG to better understand the planning and execution of movement.


Assuntos
Encéfalo/fisiologia , Mãos/fisiologia , Imaginação/fisiologia , Atividade Motora/fisiologia , Robótica , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Movimento (Física) , Periodicidade , Processamento de Sinais Assistido por Computador
11.
Brain Topogr ; 28(4): 570-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25070585

RESUMO

Evaluation of consciousness needs to be supported by the evidence of brain activation during external stimulation in patients with unresponsive wakefulness syndrome (UWS). Assessment of patients should include techniques that do not depend on overt motor responses and allow an objective investigation of the spontaneous patterns of brain activity. In particular, electroencephalography (EEG) coherence allows to easily measure functional relationships between pairs of neocortical regions and seems to be closely correlated with cognitive or behavioral measures. Here, we show the contribution of higher order associative cortices of patients with disorder of consciousness (N = 26) in response to simple sensory stimuli, such as visual, auditory and noxious stimulation. In all stimulus modalities an increase of short-range parietal and long-range fronto-parietal coherences in gamma frequencies were seen in the controls and minimally conscious patients. By contrast, UWS patients showed no significant modifications in the EEG patterns after stimulation. Our results suggest that UWS patients can not activate associative cortical networks, suggesting a lack of information integration. In fact, fronto-parietal circuits result to be connectively disrupted, conversely to patients that exhibit some form of consciousness. In the light of this, EEG coherence can be considered a powerful tool to quantify the involvement of cognitive processing giving information about the integrity of fronto-parietal network. This measure can represent a new neurophysiological marker of unconsciousness and help in determining an accurate diagnosis and rehabilitative intervention in each patient.


Assuntos
Transtornos da Consciência/fisiopatologia , Sincronização Cortical , Lobo Frontal/fisiopatologia , Ritmo Gama , Lobo Parietal/fisiopatologia , Percepção/fisiologia , Estimulação Acústica , Adulto , Idoso , Percepção Auditiva/fisiologia , Estimulação Elétrica , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Estimulação Luminosa , Percepção do Tato/fisiologia , Percepção Visual/fisiologia
12.
Neuroimage ; 102 Pt 1: 49-59, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792219

RESUMO

When localization of the epileptic focus is uncertain, the epileptic activity generator may be more accurately identified with non-invasive imaging techniques which could also serve to guide stereo-electroencephalography (sEEG) electrode implantation. The aim of this study was to assess the diagnostic value of perfusion magnetic resonance imaging with arterial spin labeling (ASL) in the identification of the epileptogenic zone, as compared to the more invasive positron-emission tomography (PET) and other established investigation methods for source imaging of electroencephalography (EEG) data. In 6 patients with drug-resistant focal epilepsy, standard video-EEG was performed to identify clinical seizure semeiology, and high-density EEG, ASL and FDG-PET to non-invasively localize the epileptic focus. A standardized source imaging procedure, low-resolution brain electromagnetic tomography constrained to the individual matter, was applied to the averaged spikes of high-density EEG. Quantification of current density, cerebral blood flow, and standardized uptake value were compared over the same anatomical areas. In most of the patients, source in the interictal phase was associated with an area of hypoperfusion and hypometabolism. Conversely, in the patients presenting with early post-ictal discharges, the brain area identified by electrical source imaging (ESI) as the generating zone appeared to be hyperperfused. In 2 patients in whom the focus remained uncertain, the postoperative follow-up showed the disappearance of epileptic activity. As an innovative and more comprehensive approach to the study of epilepsy, the combined use of ESI, perfusion MRI, and PET may play an increasingly important role in the non-invasive evaluation of patients with refractory focal epilepsy.


Assuntos
Eletroencefalografia , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/tratamento farmacológico , Imagem Multimodal , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons , Adulto , Diagnóstico por Imagem , Resistência a Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Marcadores de Spin
13.
J Magn Reson Imaging ; 40(4): 937-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24924449

RESUMO

PURPOSE: To assess the applicability of arterial spin labeling (ASL) in comparison to blood-oxygenation-level-dependent (BOLD) contrast fMRI in detecting brain activations elicited by active and passive hand movements. MATERIALS AND METHODS: A block design for ASL and BOLD fMRI was applied in 8 healthy subjects using active and passive hand tasks. Data analyses were performed at individual and group level, comparing both the different movements and the performance of the two techniques. RESULTS: Group analyses showed involvement of the same areas during both tasks, as the contralateral sensorimotor cortex, supplementary motor area, cerebellum, inferior parietal lobes, thalamus. ASL detected smaller activation volumes than BOLD, but the areas had a high degree of colocalization. Few significant differences (P < 0.05) were found when the two tasks were compared for the number of activated voxels, coordinates of center of mass, and CBF estimates. Considering together all the areas, the mean %BOLD change was 0.79 ± 0.27 and 0.73 ± 0.24 for the active and passive movements respectively, while the mean %CBF changes were 34.1 ± 8.9 and 27.1 ± 14.8. CONCLUSION: Our findings confirm passive and active tasks are strongly coupled, supporting the importance of passive tasks as a diagnostic tool in the clinical setting. ASL fMRI proved suitable for functional mapping and quantifying CBF changes, making it a promising technique for patient cohort applications.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Movimento/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
14.
MAGMA ; 27(2): 171-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23999996

RESUMO

OBJECTIVE: Among other neuroimaging techniques, functional magnetic resonance imaging (fMRI) can be useful for studying the development of motor fatigue. The aim of this study was to identify differences in cortical neuronal activation in nine subjects on three motor tasks: right-hand movement with minimum, maximum, and post-fatigue maximum finger flexion. MATERIALS AND METHODS: fMRI activation maps for each subject and during each condition were obtained by estimating the optimal model of the hemodynamic response function (HRF) out of four standard HRF models and an individual-based HRF model (ibHRF). RESULTS: ibHRF was selected as the optimal model in six out of nine subjects for minimum movement, in five out of nine for maximum movement, and in eight out of nine for post-fatigue maximum movement. As compared to maximum movement, a large reduction in the total number of active voxels (primary sensorimotor area, supplementary motor area and cerebellum) was observed in post-fatigue maximum movement. CONCLUSION: This is the first approach to the evaluation of long-lasting contraction effort in healthy subjects by means of the fMRI paradigm with the use of an individual-based hemodynamic response. The results may be relevant for defining a baseline in future studies on central fatigue in patients with neuropathological disorders.


Assuntos
Potencial Evocado Motor/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Motor/fisiologia , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Esforço Físico/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Volição/fisiologia , Adulto Jovem
15.
PLoS One ; 19(5): e0303086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776317

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a spinal deformity that affects approximately 4% of the world's population. Several hypotheses regarding the etiology of AIS have been investigated. In the last decades, impaired visual-spatial perception, alterations in spatial body orientation and sensory integration deficits have been documented. OBJECTIVE: We aimed to summarize the neurophysiological, balance, and motion evidence related to AIS published in the last fifteen years, between January 2008 and April 2023. Both observational and interventional studies were considered. Only studies using quantitative assessment methods, such as electroencephalography (EEG), electromyography (EMG), magnetic resonance imaging (MRI), somatosensory evoked potentials, force platform, or motion capture, were included. METHODS: 1250 eligible records identified from online database searching were filtered by duplicate removal, title and abstract screening, and qualitative analysis. 61 articles met the inclusion criteria (i.e., Cobb range 10°-35°, age range 10-18 years) and were summarized. RESULTS: We found significant evidence of impaired standing balance in individuals with AIS who greatly rely on visual and proprioceptive information to stay upright. EMG studies frequently reported an increased activity on the convex side of the intrinsic spinae muscles. EEG data show increased delta and theta power, higher alpha peak frequencies, and significant suppression in the alpha and beta bands in subjects with AIS during standing tasks. MRI studies report changes in white matter structures, differences in the vestibular system, and abnormal cortical activations over motor-related areas in subjects with AIS. Bracing appears to be an effective treatment for AIS, leading to improvements in static balance and gait. Methodological issues prevent reliable conclusions about the effects of other treatment options. CONCLUSIONS: This review underscores the importance of quantitative assessment methods to explore the etiology and pathophysiology of AIS. Further research is needed to measure the impact of physical therapy and orthotic treatments on the neurophysiological mechanisms of the disease.


Assuntos
Eletroencefalografia , Equilíbrio Postural , Escoliose , Humanos , Escoliose/fisiopatologia , Escoliose/terapia , Escoliose/diagnóstico por imagem , Adolescente , Equilíbrio Postural/fisiologia , Imageamento por Ressonância Magnética , Eletromiografia , Potenciais Somatossensoriais Evocados/fisiologia , Criança , Feminino
16.
J Neuroeng Rehabil ; 10: 24, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442349

RESUMO

BACKGROUND: Robot-assisted therapy in patients with neurological disease is an attempt to improve function in a moderate to severe hemiparetic arm. A better understanding of cortical modifications after robot-assisted training could aid in refining rehabilitation therapy protocols for stroke patients. Modifications of cortical activity in healthy subjects were evaluated during voluntary active movement, passive robot-assisted motor movement, and motor imagery tasks performed under unimanual and bimanual protocols. METHODS: Twenty-one channel electroencephalography (EEG) was recorded with a video EEG system in 8 subjects. The subjects performed robot-assisted tasks using the Bi-Manu Track robot-assisted arm trainer. The motor paradigm was executed during one-day experimental sessions under eleven unimanual and bimanual protocols of active, passive and imaged movements. The event-related-synchronization/desynchronization (ERS/ERD) approach to the EEG data was applied to investigate where movement-related decreases in alpha and beta power were localized. RESULTS: Voluntary active unilateral hand movement was observed to significantly activate the contralateral side; however, bilateral activation was noted in all subjects on both the unilateral and bilateral active tasks, as well as desynchronization of alpha and beta brain oscillations during the passive robot-assisted motor tasks. During active-passive movement when the right hand drove the left one, there was predominant activation in the contralateral side. Conversely, when the left hand drove the right one, activation was bilateral, especially in the alpha range. Finally, significant contralateral EEG desynchronization was observed during the unilateral task and bilateral ERD during the bimanual task. CONCLUSIONS: This study suggests new perspectives for the assessment of patients with neurological disease. The findings may be relevant for defining a baseline for future studies investigating the neural correlates of behavioral changes after robot-assisted training in stroke patients.


Assuntos
Sincronização Cortical , Potenciais Evocados/fisiologia , Mãos/fisiologia , Imaginação/fisiologia , Robótica , Adulto , Algoritmos , Ritmo alfa/fisiologia , Braço/fisiologia , Ritmo beta/fisiologia , Eletroencefalografia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Desempenho Psicomotor/fisiologia
17.
J Speech Lang Hear Res ; 66(2): 415-430, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36749838

RESUMO

PURPOSE: We present two patients who developed neurogenic stuttering after long COVID-19 related to SARS-CoV-2 infection. METHODS AND RESULTS: Both patients experienced both physical (e.g., fatigue) and cognitive difficulties, which led to impaired function of attention, lexical retrieval, and memory consolidation. Both patients had new-onset stuttering-like speech dysfluencies: Blocks and repetitions were especially evident at the initial part of words and sentences, sometimes accompanied by effortful and associated movements (e.g., facial grimaces and oro-facial movements). Neuropsychological evaluations confirmed the presence of difficulties in cognitive tasks, while neurophysiological evaluations (i.e., electroencephalography) suggested the presence of "slowed" patterns of brain activity. Neurogenic stuttering and cognitive difficulties were evident for 4-5 months after negativization of SARS-CoV-2 nasopharyngeal swab, with gradual improvement and near-to-complete recovery. CONCLUSIONS: It is now evident that SARS-CoV-2 infection may significantly involve the central nervous system, also resulting in severe and long-term consequences, even if the precise mechanisms are still unknown. In the present report, long COVID-19 resulted in neurogenic stuttering, as the likely consequence of a "slowed" metabolism of (pre)frontal and sensorimotor brain regions (as suggested by the present and previous clinical evidence). As a consequence, the pathophysiological mechanisms related to the appearance of neurogenic stuttering have been hypothesized, which help to better understand the broader and possible neurological consequences of COVID-19.


Assuntos
COVID-19 , Transtornos Cerebrovasculares , Gagueira , Humanos , Gagueira/etiologia , Síndrome de COVID-19 Pós-Aguda , COVID-19/complicações , SARS-CoV-2 , Fala/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-37155402

RESUMO

Robot-aided gait training (RAGT) plays a crucial role in providing high-dose and high-intensity task-oriented physical therapy. The human-robot interaction during RAGT remains technically challenging. To achieve this aim, it is necessary to quantify how RAGT impacts brain activity and motor learning. This work quantifies the neuromuscular effect induced by a single RAGT session in healthy middle-aged individuals. Electromyographic (EMG) and motion (IMU) data were recorded and processed during walking trials before and after RAGT. Electroencephalographic (EEG) data were recorded during rest before and after the entire walking session. Linear and nonlinear analyses detected changes in the walking pattern, paralleled by a modulation of cortical activity in the motor, attentive, and visual cortices immediately after RAGT. Increases in alpha and beta EEG spectral power and pattern regularity of the EEG match the increased regularity of body oscillations in the frontal plane, and the loss of alternating muscle activation during the gait cycle, when walking after a RAGT session. These preliminary results improve the understanding of human-machine interaction mechanisms and motor learning and may contribute to more efficient exoskeleton development for assisted walking.


Assuntos
Exoesqueleto Energizado , Robótica , Pessoa de Meia-Idade , Humanos , Robótica/métodos , Marcha/fisiologia , Caminhada/fisiologia , Terapia por Exercício/métodos , Voluntários
19.
Eur J Investig Health Psychol Educ ; 13(9): 1909-1919, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37754477

RESUMO

Attentional biases toward body-related information increase body dissatisfaction. This can lead at-risk populations to develop psychopathologies. This phenomenon has not been extensively studied in girls affected by idiopathic scoliosis. This work aimed to study the cognitive processes that could contribute to the worsening and maintaining of body image disorders in adolescent idiopathic scoliosis. Twenty-eight girls were recruited and tested for body image dissatisfaction through the Scoliosis-Research-Society-22-revised (SRS-22r) questionnaire. Attentional biases towards disease-related body parts were assessed using a computerized visual match-to-sample task: girls were asked to answer as fast and accurately as possible to find the picture matching a target by pressing a button on a computer keyboard. Reaction times (RTs) and accuracy were collected as outcome variables and compared within and between groups and conditions. Lower scores in SRS-22r self-image, function, and total score were observed in scoliosis compared to the control group (p-value < 0.01). Faster response times (p-value = 0.02) and higher accuracy (p-value = 0.02) were detected in the scoliosis group when processing shoulders and backs (i.e., disease-relevant body parts). A self-body advantage effect emerged in the scoliosis group, showing higher accuracy when answering self-body stimuli compared to others' bodies stimuli (p-value = 0.04). These results provide evidence of body image dissatisfaction and attentional bias towards disease-relevant body parts in girls with scoliosis, requiring clinical attention as highly predisposing to psychopathologies.

20.
J Clin Neurophysiol ; 40(3): 263-268, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280941

RESUMO

PURPOSE: A dysfunction of beta oscillatory activity is the neurophysiological hallmark of Parkinson disease (PD). How cortical activity reacts to external perturbations may provide insight into pathophysiological mechanisms. This study aims at identifying modifications in EEG rhythms after transcranial magnetic stimulation (TMS) in PD. We hypothesize that single-pulse TMS can modulate brain intrinsic oscillatory properties (e.g., beta excess). METHODS: EEG data were coregistered during single-pulse TMS (100 stimuli over the primary motor cortex [M1, hotspot for Abductor Pollicis Brevis], random intertrial interval from 8 to 13 seconds). We used a time-frequency analysis based on wavelet method to characterize modification of oscillatory rhythms (delta [1-4 Hz], theta [4-7 Hz], alpha [8-12 Hz], and beta [13-30 Hz] in 15 participants with PD compared with 10 healthy controls. RESULTS: An increase in beta power over the sensorimotor areas was recorded at rest in the PD group ( P < 0.05). Brain oscillations in PD transiently reset after TMS: beta power over M1 becomes comparable to that recorded in aged-matched healthy subjects in the 2 seconds following TMS. CONCLUSIONS: Transcranial magnetic stimulation over the dominant motor cortex transiently normalizes cortical oscillations. More user-friendly noninvasive brain stimulation needs to be trialed, based on this proof of concept, to provide practical, portable techniques to treat motor symptoms in PD.


Assuntos
Córtex Motor , Doença de Parkinson , Humanos , Idoso , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Eletroencefalografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA