Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 38(1): 106-18, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23273843

RESUMO

Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3ß,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/metabolismo , Interferons/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Sítios de Ligação , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/virologia , Regulação da Expressão Gênica , Hidroxicolesteróis/farmacologia , Receptores X do Fígado , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Ácido Mevalônico/metabolismo , Camundongos , Receptores Nucleares Órfãos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Esteroide Hidroxilases/genética , Replicação Viral/efeitos dos fármacos
2.
PLoS Biol ; 14(3): e1002364, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26938778

RESUMO

In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Interferons/fisiologia , MicroRNAs/metabolismo , Esteróis/biossíntese , Viroses/imunologia , Animais , Camundongos Endogâmicos C57BL
3.
Immunol Cell Biol ; 96(10): 1049-1059, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29758102

RESUMO

Inflammatory bowel disease (IBD) is a condition of chronic inflammatory intestinal disorder with increasing prevalence but limited effective therapies. The purine metabolic pathway is involved in various inflammatory processes including IBD. However, the mechanisms through which purine metabolism modulates IBD remain to be established. Here, we found that mucosal expression of genes involved in the purine metabolic pathway is altered in patients with active ulcerative colitis (UC), which is associated with elevated gene expression signatures of the group 3 innate lymphoid cell (ILC3)-interleukin (IL)-22 pathway. In mice, blockade of ectonucleotidases (NTPDases), critical enzymes for purine metabolism by hydrolysis of extracellular adenosine 5'-triphosphate (eATP) into adenosine, exacerbates dextran-sulfate sodium-induced intestinal injury. This exacerbation of colitis is associated with reduction of colonic IL-22-producing ILC3s, which afford essential protection against intestinal inflammation, and is rescued by exogenous IL-22. Mechanistically, activation of ILC3s for IL-22 production is reciprocally mediated by eATP and adenosine. These findings reveal that the NTPDase-mediated balance between eATP and adenosine regulates ILC3 cell function to provide protection against intestinal injury and suggest potential therapeutic strategies for treating IBD by targeting the purine-ILC3 axis.


Assuntos
Colite/etiologia , Colite/metabolismo , Imunidade Inata , Linfócitos/imunologia , Linfócitos/metabolismo , Purinas/metabolismo , Animais , Biomarcadores , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Citometria de Fluxo , Perfilação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Transcriptoma
4.
Brain Behav Immun ; 69: 223-234, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29162555

RESUMO

Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11ß-hydroxysteroid dehydrogenase type-1 (11ß-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11ß-HSD1 deficiency attenuates the brain cytokine response to inflammation. Because inflammation is associated with altered energy metabolism, we also examined the effects of 11ß-HSD1 deficiency upon hippocampal energy metabolism. Inflammation was induced in 11ß-HSD1 deficient (Hsd11b1Del/Del) and C57BL/6 control mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS reduced circulating neutrophil and monocyte numbers and increased plasma corticosterone levels equally in C57BL/6 and Hsd11b1Del/Del mice, suggesting a similar peripheral inflammatory response. However, the induction of pro-inflammatory cytokine mRNAs in the hippocampus was attenuated in Hsd11b1Del/Del mice. Principal component analysis of mRNA expression revealed a distinct metabolic response to LPS in hippocampus of Hsd11b1Del/Del mice. Expression of Pfkfb3 and Ldha, key contributors to the Warburg effect, showed greater induction in Hsd11b1Del/Del mice. Consistent with increased glycolytic flux, levels of 3-phosphoglyceraldehyde and dihydroxyacetone phosphate were reduced in hippocampus of LPS injected Hsd11b1Del/Del mice. Expression of Sdha and Sdhb, encoding subunits of succinate dehydrogenase/complex II that determines mitochondrial reserve respiratory capacity, was induced specifically in hippocampus of LPS injected Hsd11b1Del/Del mice, together with increased levels of its product, fumarate. These data suggest 11ß-HSD1 deficiency attenuates the hippocampal pro-inflammatory response to LPS, associated with increased capacity for aerobic glycolysis and mitochondrial ATP generation. This may provide better metabolic support and be neuroprotective during systemic inflammation or aging.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Inflamação/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Corticosterona/sangue , Hipocampo/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Comportamento de Doença/fisiologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo
5.
PLoS Pathog ; 11(4): e1004737, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25856589

RESUMO

Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a series of pharmacologic, siRNA and genetic loss-of-function experiments we determined that signalling mediated by the TLR-adaptor protein MyD88 plays a vital role for governing the inflammatory activation of the CMV enhancer in macrophages. Downstream TLR-regulated transcription factor binding motif disruption for NFκB, AP1 and CREB/ATF in the CMV enhancer demonstrated the requirement of these inflammatory signal-regulated elements in driving viral gene expression and growth in cells as well as in primary infection of neonatal mice. Thus, this study shows that the prototypical CMV enhancer, in a restricted time-gated manner, co-opts through DNA regulatory mimicry elements, innate-immune transcription factors to drive viral expression and replication in the face of on-going pro-inflammatory antiviral responses in vitro and in vivo and; suggests an unexpected role for inflammation in promoting acute infection and has important future implications for regulating latency.


Assuntos
Infecções por Citomegalovirus/imunologia , Regulação Viral da Expressão Gênica/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Ativação Transcricional , Proteínas Virais/imunologia , Doença Aguda , Animais , Imunoprecipitação da Cromatina , Citomegalovirus/imunologia , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Immunoblotting , Inflamação/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Ativação Transcricional/imunologia , Transfecção
6.
Clin Infect Dis ; 63(9): 1213-1226, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436422

RESUMO

Vaccines can have nontargeted heterologous effects that manifest as increased protection against nonvaccine infections, as described for measles vaccine (MV), or increased susceptibility to infections and death, as described following diphtheria-tetanus-whole cell pertussis (DTP) vaccination. The mechanisms are unknown, and high-quality immunological studies are lacking. This study was designed to investigate the heterologous effects of MV and DTP in 302 Gambian infants. The results support a sex-differential immunosuppressive effect of DTP on innate proinflammatory responses and T-cell immunity. Males but not females receiving MV had enhanced proinflammatory innate responses. The results point to modified signaling via Toll-like receptor 4 (TLR4) as a possible mechanism for the effects on innate immunity. When both vaccines were administered together, purified protein derivative responses were enhanced in females but downregulated in males. Collectively, these data indicate immunological effects that could account for heterologous effects of MV and DTP, to take forward into prospective trials.


Assuntos
Vacina contra Difteria, Tétano e Coqueluche/imunologia , Vacina contra Sarampo/imunologia , Caracteres Sexuais , Anticorpos Antivirais/sangue , Estudos de Coortes , Citocinas/sangue , Feminino , Gâmbia , Genoma Humano , Humanos , Imunidade Inata , Imunoglobulina G/sangue , Terapia de Imunossupressão , Lactente , Estudos Longitudinais , Masculino , RNA , Linfócitos T/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Transcriptoma
7.
J Immunol ; 191(5): 2226-35, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913972

RESUMO

Uterine NK cells (uNK) play a role in the regulation of placentation, but their functions in nonpregnant endometrium are not understood. We have previously reported suppression of endometrial bleeding and alteration of spiral artery morphology in women exposed to asoprisnil, a progesterone receptor modulator. We now compare global endometrial gene expression in asoprisnil-treated versus control women, and we demonstrate a statistically significant reduction of genes in the IL-15 pathway, known to play a key role in uNK development and function. Suppression of IL-15 by asoprisnil was also observed at mRNA level (p < 0.05), and immunostaining for NK cell marker CD56 revealed a striking reduction of uNK in asoprisnil-treated endometrium (p < 0.001). IL-15 levels in normal endometrium are progesterone-responsive. Progesterone receptor (PR) positive stromal cells transcribe both IL-15 and IL-15RA. Thus, the response of stromal cells to progesterone will be to increase IL-15 trans-presentation to uNK, supporting their expansion and differentiation. In asoprisnil-treated endometrium, there is a marked downregulation of stromal PR expression and virtual absence of uNK. These novel findings indicate that the IL-15 pathway provides a missing link in the complex interplay among endometrial stromal cells, uNK, and spiral arteries affecting physiologic and pathologic endometrial bleeding.


Assuntos
Estrenos/uso terapêutico , Células Matadoras Naturais/metabolismo , Leiomioma/tratamento farmacológico , Oximas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Método Duplo-Cego , Endométrio/efeitos dos fármacos , Endométrio/imunologia , Endométrio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Interleucina-15 , Células Matadoras Naturais/imunologia , Leiomioma/complicações , Leiomioma/imunologia , Ativação Linfocitária/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Progesterona/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Neoplasias Uterinas/complicações , Neoplasias Uterinas/imunologia , Útero
8.
PLoS Biol ; 9(3): e1000598, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21408089

RESUMO

Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or ß but not TNF, IL1ß, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNß treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNß, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNß treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy.


Assuntos
Regulação para Baixo , Infecções por Herpesviridae/imunologia , Interferon beta/fisiologia , Interferon gama/fisiologia , Muromegalovirus/imunologia , Esteróis/biossíntese , Animais , Antivirais/farmacologia , Colesterol/metabolismo , Infecções por Herpesviridae/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Imunidade Inata , Interferon beta/biossíntese , Interferon beta/farmacologia , Interferon gama/biossíntese , Interferon gama/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Interferência de RNA , Transdução de Sinais , Sinvastatina/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia
9.
Environ Pollut ; 349: 123936, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588972

RESUMO

Antibiotic resistance genes originating from human activity are considered important environmental pollutants. Wildlife species can act as sentinels for coastal environmental contamination and in this study we used qPCR array technology to investigate the variety and abundance of antimicrobial resistance genes (ARGs), mobile genetic elements (MGEs) and integrons circulating within seal populations both near to and far from large human populations located around the Scottish and northwest English coast. Rectal swabs were taken from 50 live grey seals and nine live harbour seals. Nucleic acids were stabilised upon collection, enabling extraction of sufficient quality and quantity DNA for downstream analysis. 78 ARG targets, including genes of clinical significance, four MGE targets and three integron targets were used to monitor genes within 22 sample pools. 30 ARGs were detected, as well as the integrons intl1 and intl2 and tnpA transposase. Four ß-lactam, nine tetracycline, two phenicol, one trimethoprim, three aminoglycoside and ten multidrug resistance genes were detected as well as mcr-1 which confers resistance to colistin, an important drug of last resort. No sulphonamide, vancomycin, macrolide, lincosamide or streptogramin B (MLSB) resistance genes were detected. Resistance genes were detected in all sites but the highest number of ARGs (n = 29) was detected in samples derived from grey seals on the Isle of May, Scotland during the breeding season, and these genes also had the highest average abundance in relation to the 16S rRNA gene. This pilot study demonstrates the effectiveness of a culture-independent workflow for global analysis of ARGs within the microbiota of live, free-ranging, wild animals from habitats close to and remote from human habitation, and highlights seals as a valuable indicator species for monitoring the presence, abundance and land-sea transference of resistance genes within and between ecosystems.


Assuntos
Fezes , Animais , Fezes/microbiologia , Escócia , Monitoramento Ambiental/métodos , Focas Verdadeiras/genética , Antibacterianos/farmacologia , Baías , Farmacorresistência Bacteriana/genética , Phoca/genética , Phoca/microbiologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Integrons/genética
10.
EBioMedicine ; 100: 104981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290288

RESUMO

BACKGROUND: Mechanistic studies have established a biological role of sterol metabolism in infection and immunity with clinical data linking deranged cholesterol metabolism during sepsis with poorer outcomes. In this systematic review we assess the relationship between biomarkers of cholesterol homeostasis and mortality in critical illness. METHODS: We identified articles by searching a total of seven electronic databases from inception to October 2023. Prospective observational cohort studies included those subjects who had systemic cholesterol (Total Cholesterol (TC), HDL-C or LDL-C) levels assessed on the first day of ICU admission and short-term mortality recorded. Meta-analysis and meta-regression were used to evaluate overall mean differences in serum cholesterol levels between survivors and non-survivors. Study quality was assessed using the Newcastle-Ottawa Scale. FINDINGS: From 6469 studies identified by searches, 24 studies with 2542 participants were included in meta-analysis. Non-survivors had distinctly lower HDL-C at ICU admission -7.06 mg/dL (95% CI -9.21 to -4.91, p < 0.0001) in comparison with survivors. Corresponding differences were also seen less robustly for TC -21.86 mg/dL (95% CI -31.23 to -12.49, p < 0.0001) and LDL-C -8.79 mg/dL (95% CI, -13.74 to -3.83, p = 0.0005). INTERPRETATION: Systemic cholesterol levels (TC, HDL-C and LDL-C) on admission to critical care are inversely related to mortality. This finding is consistent with the notion that inflammatory and metabolic setpoints are coupled, such that the maladaptive-setpoint changes of cholesterol in critical illness are related to underlying inflammatory processes. We highlight the potential of HDL-biomarkers as early predictors of severity of illness and emphasise that future research should consider the metabolic and functional heterogeneity of HDLs. FUNDING: EU-ERDF-Welsh Government Ser Cymru programme, BBSRC, and EU-FP7 ClouDx-i project (PG).


Assuntos
Estado Terminal , Sepse , Humanos , HDL-Colesterol , LDL-Colesterol , Colesterol , Biomarcadores , Estudos Observacionais como Assunto
11.
Proc Natl Acad Sci U S A ; 107(31): 13830-5, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643939

RESUMO

Although the functional parameters of microRNAs (miRNAs) have been explored in some depth, the roles of these molecules in viral infections remain elusive. Here we report a general method for global analysis of miRNA function that compares the significance of both overexpressing and inhibiting each mouse miRNA on the growth properties of different viruses. Our comparative analysis of representatives of all three herpesvirus subfamilies identified host miRNAs with broad anti- and proviral properties which extend to a single-stranded RNA virus. Specifically, we demonstrate the broad antiviral capacity of miR-199a-3p and illustrate that this individual host-encoded miRNA regulates multiple pathways required and/or activated by viruses, including PI3K/AKT and ERK/MAPK signaling, oxidative stress signaling, and prostaglandin synthesis. Global miRNA expression analysis further demonstrated that the miR-199a/miR-214 cluster is down-regulated in both murine and human cytomegalovirus infection and manifests similar antiviral properties in mouse and human cells. Overall, we report a general strategy for examining the contributions of individual host miRNAs in viral infection and provide evidence that these molecules confer broad inhibitory potential against multiple viruses.


Assuntos
Antivirais/análise , Estudo de Associação Genômica Ampla/métodos , Herpesviridae/efeitos dos fármacos , MicroRNAs/análise , Animais , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , MicroRNAs/farmacologia , Células NIH 3T3 , Transdução de Sinais/efeitos dos fármacos
12.
Nat Methods ; 6(8): 569-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19644458

RESUMO

RNA interference (RNAi) has become a powerful technique for reverse genetics and drug discovery, and in both of these areas large-scale high-throughput RNAi screens are commonly performed. The statistical techniques used to analyze these screens are frequently borrowed directly from small-molecule screening; however, small-molecule and RNAi data characteristics differ in meaningful ways. We examine the similarities and differences between RNAi and small-molecule screens, highlighting particular characteristics of RNAi screen data that must be addressed during analysis. Additionally, we provide guidance on selection of analysis techniques in the context of a sample workflow.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Projetos de Pesquisa/estatística & dados numéricos , Bibliotecas de Moléculas Pequenas , Animais , Simulação por Computador , Modelos Estatísticos
13.
J Virol ; 85(12): 6065-76, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21471238

RESUMO

The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.


Assuntos
Fibroblastos/virologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Muromegalovirus/metabolismo , Proteínas Virais/metabolismo , Animais , Genoma Viral , Infecções por Herpesviridae/virologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Muromegalovirus/genética , Muromegalovirus/patogenicidade , Mutação , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo , Proteínas Virais/genética
14.
J Virol ; 85(19): 10286-99, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775459

RESUMO

Activated macrophages play a central role in controlling inflammatory responses to infection and are tightly regulated to rapidly mount responses to infectious challenge. Type I interferon (alpha/beta interferon [IFN-α/ß]) and type II interferon (IFN-γ) play a crucial role in activating macrophages and subsequently restricting viral infections. Both types of IFNs signal through related but distinct signaling pathways, inducing a vast number of interferon-stimulated genes that are overlapping but distinguishable. The exact mechanism by which IFNs, particularly IFN-γ, inhibit DNA viruses such as cytomegalovirus (CMV) is still not fully understood. Here, we investigate the antiviral state developed in macrophages upon reversible inhibition of murine CMV by IFN-γ. On the basis of molecular profiling of the reversible inhibition, we identify a significant contribution of a restricted type I IFN subnetwork linked with IFN-γ activation. Genetic knockout of the type I-signaling pathway, in the context of IFN-γ stimulation, revealed an essential requirement for a primed type I-signaling process in developing a full refractory state in macrophages. A minimal transient induction of IFN-ß upon macrophage activation with IFN-γ is also detectable. In dose and kinetic viral replication inhibition experiments with IFN-γ, the establishment of an antiviral effect is demonstrated to occur within the first hours of infection. We show that the inhibitory mechanisms at these very early times involve a blockade of the viral major immediate-early promoter activity. Altogether our results show that a primed type I IFN subnetwork contributes to an immediate-early antiviral state induced by type II IFN activation of macrophages, with a potential further amplification loop contributed by transient induction of IFN-ß.


Assuntos
Interferon Tipo I/imunologia , Interferon gama/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Muromegalovirus/crescimento & desenvolvimento , Muromegalovirus/imunologia , Animais , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fatores de Tempo
15.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37171130

RESUMO

BACKGROUND: Integration of data from multiple domains can greatly enhance the quality and applicability of knowledge generated in analysis workflows. However, working with health data is challenging, requiring careful preparation in order to support meaningful interpretation and robust results. Ontologies encapsulate relationships between variables that can enrich the semantic content of health datasets to enhance interpretability and inform downstream analyses. FINDINGS: We developed an R package for electronic health data preparation, "eHDPrep," demonstrated upon a multimodal colorectal cancer dataset (661 patients, 155 variables; Colo-661); a further demonstrator is taken from The Cancer Genome Atlas (459 patients, 94 variables; TCGA-COAD). eHDPrep offers user-friendly methods for quality control, including internal consistency checking and redundancy removal with information-theoretic variable merging. Semantic enrichment functionality is provided, enabling generation of new informative "meta-variables" according to ontological common ancestry between variables, demonstrated with SNOMED CT and the Gene Ontology in the current study. eHDPrep also facilitates numerical encoding, variable extraction from free text, completeness analysis, and user review of modifications to the dataset. CONCLUSIONS: eHDPrep provides effective tools to assess and enhance data quality, laying the foundation for robust performance and interpretability in downstream analyses. Application to multimodal colorectal cancer datasets resulted in improved data quality, structuring, and robust encoding, as well as enhanced semantic information. We make eHDPrep available as an R package from CRAN (https://cran.r-project.org/package = eHDPrep) and GitHub (https://github.com/overton-group/eHDPrep).


Assuntos
Neoplasias Colorretais , Semântica , Humanos , Ontologia Genética , Confiabilidade dos Dados , Controle de Qualidade , Neoplasias Colorretais/genética
16.
RNA ; 14(9): 1959-72, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18658122

RESUMO

RNA levels in a cell are determined by the relative rates of RNA synthesis and decay. State-of-the-art transcriptional analyses only employ total cellular RNA. Therefore, changes in RNA levels cannot be attributed to RNA synthesis or decay, and temporal resolution is poor. Recently, it was reported that newly transcribed RNA can be biosynthetically labeled for 1-2 h using thiolated nucleosides, purified from total cellular RNA and subjected to microarray analysis. However, in order to study signaling events at molecular level, analysis of changes occurring within minutes is required. We developed an improved approach to separate total cellular RNA into newly transcribed and preexisting RNA following 10-15 min of metabolic labeling. Employing new computational tools for array normalization and half-life determination we simultaneously study short-term RNA synthesis and decay as well as their impact on cellular transcript levels. As an example we studied the response of fibroblasts to type I and II interferons (IFN). Analysis of RNA transcribed within 15-30 min at different times during the first three hours of interferon-receptor activation resulted in a >10-fold increase in microarray sensitivity and provided a comprehensive profile of the kinetics of IFN-mediated changes in gene expression. We identify a previously undisclosed highly connected network of short-lived transcripts selectively down-regulated by IFNgamma in between 30 and 60 min after IFN treatment showing strong associations with cell cycle and apoptosis, indicating novel mechanisms by which IFNgamma affects these pathways.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Estabilidade de RNA/genética , RNA Mensageiro/biossíntese , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interferon Tipo I/farmacologia , Interferon gama/farmacologia , Camundongos , Células NIH 3T3 , RNA Mensageiro/análise , Transcrição Gênica
17.
Rapid Commun Mass Spectrom ; 24(7): 1093-104, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20217656

RESUMO

We present the application of a targeted liquid chromatography/mass spectrometry (LC/MS) approach developed on a linear ion trap for the evaluation of the abundance of cytoplasmic proteins from a HeLa cell extract. Using a standard data-dependent approach, we identified some specific peptides from this extract which were also commercially available in their AQUA form (use for absolute quantitation). For some of the peptides, we observed a non-linear response between the intensity and the added quantity which was then fitted using a quadratic fit. All AQUA peptides spiked into a mix of 3 microg of the HeLa cell digest extract were detected down to 16 fmol. We placed an emphasis on peptide detection which, in this study, is performed using a combination of properties such as three specific Q3-like ion signatures (for a given Q1-like selection) and co-elution with the AQUA peptide counterparts. Detecting a peptide without necessarily identifying it using a search engine imposes less constraint in terms of tandem mass (MS/MS) spectra purity. An example is shown where a peptide is detected using those criteria but could not be identified by Mascot due to its lower abundance. To complement this observation, we used a cross-correlation analysis approach in order to separate two populations of MS/MS fragments based on differences in their elution patterns. Such an approach opens the door to new strategies to analyse lower intensity peptide fragments. An in silico analysis of the human trypsinosome allows the evaluation of how unique are the sets of features that we are using for peptide detection.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citoplasma/química , Fragmentos de Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Simulação por Computador , Células HeLa , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteômica/métodos , Tripsina/metabolismo
18.
Virus Genes ; 41(2): 192-201, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20652732

RESUMO

Varicella-Zoster virus (VZV) is a human herpes virus that reactivates from a latent state in human trigeminal and dorsal root ganglia to cause herpes zoster (shingles) which is a painful vesicular dermatomal skin eruption. The major complication of herpes zoster is post-herpetic neuralgia (PHN) which is a serious condition occurring especially in individuals over 50 years. PHN is extremely painful, may be permanent, and is frequently very refractory to all treatment. The ability to identify those patients with herpes zoster who are likely to develop PHN would be highly beneficial as it would allow pre-emptive anti-viral therapy. We have assessed the potential of using long oligonucleotide VZV microarrays to determine whether MeWo cells infected with VZV isolates obtained from 13 patients with zoster who had subsequently developed PHN showed significant transcriptomal differences from MeWo cells infected with viruses isolated from ten zoster patients who had not developed PHN. We found that viral gene expression from sample to sample within a group (PHN patients or non-PHN patients) varied as much, or more, than the viral gene expression between those groups. Quantitative real-time polymerase chain reaction studies carried out on 11 open reading frames on four representative viral infected MeWo cell lines (two from each group) confirmed the transcriptomal heterogeneity between the two groups. Growth curve analyses of ten representative infected cell lines (five from each group) showed that PHN and non-PHN-associated viruses replicated equally efficiently. Taken together, these findings suggest that viral microarray-based transcriptomal measurements are unlikely to prove of clinical utility in predicting the incidence of PHN.


Assuntos
Perfilação da Expressão Gênica , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/patogenicidade , Neuralgia Pós-Herpética/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Feminino , Herpesvirus Humano 3/isolamento & purificação , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
BMC Genomics ; 10: 372, 2009 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-19664281

RESUMO

BACKGROUND: Interferons (IFNs) are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs). Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNgamma. RESULTS: Transfection of murine bone-marrow derived macrophages (BMDMs) with a non-targeting (control) siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000) prior to stimulation with IFNgamma. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNgamma. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response. CONCLUSION: Our results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated with type I and type II IFN signalling and a suppression of macrophage M1 polarization.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Interferon gama/metabolismo , Macrófagos/metabolismo , Interferência de RNA , Animais , Sítios de Ligação , Células Cultivadas , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Família Multigênica , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo
20.
BMC Bioinformatics ; 9: 558, 2008 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19114001

RESUMO

BACKGROUND: Microarray analysis allows the simultaneous measurement of thousands to millions of genes or sequences across tens to thousands of different samples. The analysis of the resulting data tests the limits of existing bioinformatics computing infrastructure. A solution to this issue is to use High Performance Computing (HPC) systems, which contain many processors and more memory than desktop computer systems. Many biostatisticians use R to process the data gleaned from microarray analysis and there is even a dedicated group of packages, Bioconductor, for this purpose. However, to exploit HPC systems, R must be able to utilise the multiple processors available on these systems. There are existing modules that enable R to use multiple processors, but these are either difficult to use for the HPC novice or cannot be used to solve certain classes of problems. A method of exploiting HPC systems, using R, but without recourse to mastering parallel programming paradigms is therefore necessary to analyse genomic data to its fullest. RESULTS: We have designed and built a prototype framework that allows the addition of parallelised functions to R to enable the easy exploitation of HPC systems. The Simple Parallel R INTerface (SPRINT) is a wrapper around such parallelised functions. Their use requires very little modification to existing sequential R scripts and no expertise in parallel computing. As an example we created a function that carries out the computation of a pairwise calculated correlation matrix. This performs well with SPRINT. When executed using SPRINT on an HPC resource of eight processors this computation reduces by more than three times the time R takes to complete it on one processor. CONCLUSION: SPRINT allows the biostatistician to concentrate on the research problems rather than the computation, while still allowing exploitation of HPC systems. It is easy to use and with further development will become more useful as more functions are added to the framework.


Assuntos
Biologia Computacional/métodos , Metodologias Computacionais , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Algoritmos , Animais , Gráficos por Computador , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Genômica , Humanos , Reconhecimento Automatizado de Padrão , Linguagens de Programação , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA