Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Physiol ; 598(11): 2199-2222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246836

RESUMO

KEY POINTS: Kv3.1 and Kv3.3 subunits are highly expressed in the auditory brainstem, with little or no mRNA for Kv3.2 or Kv3.4. Changes in Kv3 currents and action potential (AP) firing were analysed from wild-type, Kv3.1 and Kv3.3 knockout (KO) mice. Both Kv3.1 and Kv3.3 immunostaining was present and western blots confirmed loss of subunit protein in the respective KO. Medial nucleus of the trapezoid body (MNTB) AP repolarization utilized Kv3.1 and/or Kv3.3; while in the lateral superior olive (LSO) Kv3.3 was essential. Voltage-gated calcium currents were unchanged between the genotypes. But APs evoked higher [Ca2+ ]i in LSO than MNTB neurons; and were highest in the Kv3.3KO, consistent with longer AP durations. High frequency stimulation increased AP failure rates and AP latency in LSO neurons from the Kv3.3KO, underlining the physiological consequences for binaural integration. LSO neurons require Kv3.3 for functional Kv3 channels, while MNTB neurons can utilize either Kv3.1 or Kv3.3 subunits. ABSTRACT: Kv3 voltage-gated potassium channels mediate action potential (AP) repolarization. The relative importance of Kv3.1 and Kv3.3 subunits for assembly of functional channels in neurons of the auditory brainstem was examined from the physiological perspective that speed and precision of AP firing are crucial for sound source localization. High levels of Kv3.1 and Kv3.3 mRNA and protein were measured, with no evidence of compensation by Kv3.2 or Kv3.4 in the respective knockout (KO) mouse. Using the KOs, composition of Kv3 channels was constrained to either Kv3.1 or Kv3.3 subunits in principal neurons of the medial nucleus of the trapezoid body (MNTB) and lateral superior olive (LSO); while TEA (1 mm) was employed to block Kv3-mediated outward potassium currents in voltage- and current clamp experiments. MNTB neuron APs (half-width 0.31 ± 0.08 ms, n = 25) were fast, reliable, and showed no distinction between channels assembled from Kv3.1 or Kv3.3 subunits (in the respective KO). LSO AP half-widths were also fast, but absolutely required Kv3.3 subunits for fast repolarization (half-widths: 0.25 ± 0.08 ms, n = 19 wild-type, 0.60 ± 0.17 ms, n = 21 Kv3.3KO, p = 0.0001). The longer AP duration increased LSO calcium influx and AP failure rates, and increased AP latency and jitter during high frequency repetitive firing. Both Kv3.1 and Kv3.3 subunits contribute to Kv3 channels in the MNTB (and compensate for each other in each KO); in contrast, LSO neurons require Kv3.3 subunits for fast repolarization and to sustain AP firing during high frequency stimulation. In conclusion, Kv3 channels exhibit both redundancy and Kv3.3 dominance between the brainstem nuclei involved in sound localization.


Assuntos
Vias Auditivas , Corpo Trapezoide , Potenciais de Ação , Animais , Tronco Encefálico , Camundongos , Neurônios
2.
J Physiol ; 596(9): 1699-1721, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29430661

RESUMO

KEY POINTS: Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. ABSTRACT: The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low.


Assuntos
Potenciais de Ação , Tronco Encefálico/fisiologia , Glucose/metabolismo , Ácido Láctico/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Tronco Encefálico/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos CBA
3.
J Neurophysiol ; 117(2): 756-766, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881722

RESUMO

The medial nucleus of the trapezoid body (MNTB) is an important source of inhibition during the computation of sound location. It transmits fast and precisely timed action potentials at high frequencies; this requires an efficient calcium clearance mechanism, in which plasma membrane calcium ATPase 2 (PMCA2) is a key component. Deafwaddler (dfw2J ) mutant mice have a null mutation in PMCA2 causing deafness in homozygotes (dfw2J /dfw2J ) and high-frequency hearing loss in heterozygotes (+/dfw2J ). Despite the deafness phenotype, no significant differences in MNTB volume or cell number were observed in dfw2J homozygous mutants, suggesting that PMCA2 is not required for MNTB neuron survival. The MNTB tonotopic axis encodes high to low sound frequencies across the medial to lateral dimension. We discovered a cell size gradient along this axis: lateral neuronal somata are significantly larger than medially located somata. This size gradient is decreased in +/dfw2J and absent in dfw2J /dfw2J The lack of acoustically driven input suggests that sound-evoked activity is required for maintenance of the cell size gradient. This hypothesis was corroborated by selective elimination of auditory hair cell activity with either hair cell elimination in Pou4f3 DTR mice or inner ear tetrodotoxin (TTX) treatment. The change in soma size was reversible and recovered within 7 days of TTX treatment, suggesting that regulation of the gradient is dependent on synaptic activity and that these changes are plastic rather than permanent.NEW & NOTEWORTHY Neurons of the medial nucleus of the trapezoid body (MNTB) act as fast-spiking inhibitory interneurons within the auditory brain stem. The MNTB is topographically organized, with low sound frequencies encoded laterally and high frequencies medially. We discovered a cell size gradient along this axis: lateral neurons are larger than medial neurons. The absence of this gradient in deaf mice lacking plasma membrane calcium ATPase 2 suggests an activity-dependent, calcium-mediated mechanism that controls neuronal soma size.


Assuntos
Núcleo Coclear/patologia , Surdez/patologia , Surdez/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Neurônios/patologia , Som , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Surdez/genética , Toxina Diftérica/farmacologia , Potenciais Evocados Auditivos/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Neurônios/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Terminações Pré-Sinápticas/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo
4.
J Physiol ; 594(13): 3683-703, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27104476

RESUMO

KEY POINTS: Lateral superior olive (LSO) principal neurons receive AMPA receptor (AMPAR) - and NMDA receptor (NMDAR)-mediated EPSCs and glycinergic IPSCs. Both EPSCs and IPSCs have slow kinetics in prehearing animals, which during developmental maturation accelerate to sub-millisecond decay time-constants. This correlates with a change in glutamate and glycine receptor subunit composition quantified via mRNA levels. The NMDAR-EPSCs accelerate over development to achieve decay time-constants of 2.5 ms. This is the fastest NMDAR-mediated EPSC reported. Acoustic trauma (AT, loud sounds) slow AMPAR-EPSC decay times, increasing GluA1 and decreasing GluA4 mRNA. Modelling of interaural intensity difference suggests that the increased EPSC duration after AT shifts interaural level difference to the right and compensates for hearing loss. Two months after AT the EPSC decay times recovered to control values. Synaptic transmission in the LSO matures by postnatal day 20, with EPSCs and IPSCs having fast kinetics. AT changes the AMPAR subunits expressed and slows the EPSC time-course at synapses in the central auditory system. ABSTRACT: Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage-clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub-millisecond time-constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)-EPSC decay τ accelerated from >40 ms in prehearing animals to 2.6 ± 0.4 ms in adults, as GluN2C expression increased. In vivo induction of AT at around P20 disrupted IPSC and EPSC integration in the LSO, so that 1 week later the AMPA receptor (AMPAR)-EPSC decay was slowed and mRNA for GluA1 increased while GluA4 decreased. In contrast, GlyR IPSC and NMDAR-EPSC decay times were unchanged. Computational modelling confirmed that matched IPSC and EPSC kinetics are required to generate mature interaural level difference functions, and that longer-lasting EPSCs compensate to maintain binaural function with raised auditory thresholds after AT. We conclude that LSO excitatory and inhibitory synaptic drive matures to identical time-courses, that AT changes synaptic AMPARs by expression of subunits with slow kinetics (which recover over 2 months) and that loud sounds reversibly modify excitatory synapses in the brain, changing synaptic function for several weeks after exposure.


Assuntos
Estimulação Acústica , Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Receptores de AMPA/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos Endogâmicos CBA , Subunidades Proteicas/fisiologia
5.
J Neurophysiol ; 116(6): 2676-2688, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655966

RESUMO

In mammals with good low-frequency hearing, the medial superior olive (MSO) computes sound location by comparing differences in the arrival time of a sound at each ear, called interaural time disparities (ITDs). Low-frequency sounds are not reflected by the head, and therefore level differences and spectral cues are minimal or absent, leaving ITDs as the only cue for sound localization. Although mammals with high-frequency hearing and small heads (e.g., bats, mice) barely experience ITDs, the MSO is still present in these animals. Yet, aside from studies in specialized bats, in which the MSO appears to serve functions other than ITD processing, it has not been studied in small mammals that do not hear low frequencies. Here we describe neurons in the mouse brain stem that share prominent anatomical, morphological, and physiological properties with the MSO in species known to use ITDs for sound localization. However, these neurons also deviate in some important aspects from the typical MSO, including a less refined arrangement of cell bodies, dendrites, and synaptic inputs. In vitro, the vast majority of neurons exhibited a single, onset action potential in response to suprathreshold depolarization. This spiking pattern is typical of MSO neurons in other species and is generated from a complement of Kv1, Kv3, and IH currents. In vivo, mouse MSO neurons show bilateral excitatory and inhibitory tuning as well as an improvement in temporal acuity of spiking during bilateral acoustic stimulation. The combination of classical MSO features like those observed in gerbils with more unique features similar to those observed in bats and opossums make the mouse MSO an interesting model for exploiting genetic tools to test hypotheses about the molecular mechanisms and evolution of ITD processing.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Complexo Olivar Superior/citologia , Complexo Olivar Superior/metabolismo , Estimulação Acústica , Animais , Animais Recém-Nascidos , Vias Auditivas/fisiologia , Colina O-Acetiltransferase/metabolismo , Estimulação Elétrica , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosfopiruvato Hidratase/metabolismo , Psicoacústica , Estilbamidinas/farmacocinética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
6.
J Neurosci ; 34(21): 7047-58, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24849341

RESUMO

Specific missense mutations in the CACNA1A gene, which encodes a subunit of voltage-gated CaV2.1 channels, are associated with familial hemiplegic migraine type 1 (FHM1), a rare monogenic subtype of common migraine with aura. We used transgenic knock-in (KI) mice harboring the human pathogenic FHM1 mutation S218L to study presynaptic Ca(2+) currents, EPSCs, and in vivo activity at the calyx of Held synapse. Whole-cell patch-clamp recordings of presynaptic terminals from S218L KI mice showed a strong shift of the calcium current I-V curve to more negative potentials, leading to an increase in basal [Ca(2+)]i, increased levels of spontaneous transmitter release, faster recovery from synaptic depression, and enhanced synaptic strength despite smaller action-potential-elicited Ca(2+) currents. The gain-of-function of transmitter release of the S218L mutant was reproduced in vivo, including evidence for an increased release probability, demonstrating its relevance for glutamatergic transmission. This synaptic phenotype may explain the misbalance between excitation and inhibition in neuronal circuits resulting in a persistent hyperexcitability state and other migraine-relevant mechanisms such as an increased susceptibility to cortical spreading depression.


Assuntos
Tronco Encefálico/fisiologia , Canais de Cálcio Tipo N/genética , Cálcio/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Mutação/genética , Sinapses/fisiologia , Agatoxinas/farmacologia , Animais , Tronco Encefálico/citologia , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Enxaqueca com Aura/patologia , Enxaqueca com Aura/fisiopatologia , Neurotoxinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/genética , Tetrodotoxina/farmacologia , Fatores de Tempo
7.
J Physiol ; 593(7): 1685-700, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25605440

RESUMO

Hyperpolarization-activated non-specific cation-permeable channels (HCN) mediate I(H) currents, which are modulated by cGMP and cAMP and by nitric oxide (NO) signalling. Channel properties depend upon subunit composition (HCN1-4 and accessory subunits) as demonstrated in expression systems, but physiological relevance requires investigation in native neurons with intact intracellular signalling. Here we use the superior olivary complex (SOC), which exhibits a distinctive pattern of HCN1 and HCN2 expression, to investigate NO modulation of the respective I(H) currents, and compare properties in wild-type and HCN1 knockout mice. The medial nucleus of the trapezoid body (MNTB) expresses HCN2 subunits exclusively, and sends inhibitory projections to the medial and lateral superior olives (MSO, LSO) and the superior paraolivary nucleus (SPN). In contrast to the MNTB, these target nuclei possess an I(H) with fast kinetics, and they express HCN1 subunits. NO is generated in the SOC following synaptic activity and here we show that NO selectively suppresses HCN1, while enhancing IH mediated by HCN2 subunits. NO hyperpolarizes the half-activation of HCN1-mediated currents and slows the kinetics of native IH currents in the MSO, LSO and SPN. This modulation was independent of cGMP and absent in transgenic mice lacking HCN1. Independently, NO signalling depolarizes the half-activation of HCN2-mediated I(H) currents in a cGMP-dependent manner. Thus, NO selectively suppresses fast HCN1-mediated I(H) and facilitates a slow HCN2-mediated I(H) , so generating a spectrum of modulation, dependent on the local expression of HCN1 and/or HCN2.


Assuntos
Tronco Encefálico/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Óxido Nítrico/farmacologia , Canais de Potássio/fisiologia , Animais , Tronco Encefálico/metabolismo , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Técnicas In Vitro , Masculino , Potenciais da Membrana , Camundongos Endogâmicos CBA , Camundongos Knockout , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Canais de Potássio/genética
8.
Proc Natl Acad Sci U S A ; 109(21): 8292-7, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566618

RESUMO

Exposure to loud sound causes cochlear damage resulting in hearing loss and tinnitus. Tinnitus has been related to hyperactivity in the central auditory pathway occurring weeks after loud sound exposure. However, central excitability changes concomitant to hearing loss and preceding those periods of hyperactivity, remain poorly explored. Here we investigate mechanisms contributing to excitability changes in the dorsal cochlear nucleus (DCN) shortly after exposure to loud sound that produces hearing loss. We show that acoustic overexposure alters synaptic transmission originating from the auditory and the multisensory pathway within the DCN in different ways. A reduction in the number of myelinated auditory nerve fibers leads to a reduced maximal firing rate of DCN principal cells, which cannot be restored by increasing auditory nerve fiber recruitment. In contrast, a decreased membrane resistance of DCN granule cells (multisensory inputs) leads to a reduced maximal firing rate of DCN principal cells that is overcome when additional multisensory fibers are recruited. Furthermore, gain modulation by inhibitory synaptic transmission is disabled in both auditory and multisensory pathways. These cellular mechanisms that contribute to decreased cellular excitability in the central auditory pathway are likely to represent early neurobiological markers of hearing loss and may suggest interventions to delay or stop the development of hyperactivity that has been associated with tinnitus.


Assuntos
Nervo Coclear/fisiopatologia , Núcleo Coclear/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Zumbido/fisiopatologia , Animais , Vias Auditivas/patologia , Vias Auditivas/fisiopatologia , Limiar Auditivo/fisiologia , Cóclea/patologia , Cóclea/fisiopatologia , Nervo Coclear/patologia , Núcleo Coclear/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Perda Auditiva Provocada por Ruído/patologia , Humanos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Inibição Neural/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Zumbido/patologia
9.
J Neurosci ; 33(38): 15044-9, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24048834

RESUMO

The medial nucleus of the trapezoid body (MNTB) in the superior olivary complex (SOC) is an inhibitory hub considered critical for binaural sound localization. We show that genetic ablation of MNTB neurons in mice only subtly affects this ability by prolonging the minimum time required to detect shifts in sound location. Furthermore, glycinergic innervation of the SOC is maintained without an MNTB, consistent with the existence of parallel inhibitory inputs. These findings redefine the role of MNTB in sound localization and suggest that the inhibitory network is more complex than previously thought.


Assuntos
Glicina/metabolismo , Inibição Neural/fisiologia , Núcleo Olivar/citologia , Núcleo Olivar/fisiologia , Localização de Som/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Estimulação Acústica , Animais , Animais Recém-Nascidos , Vias Auditivas/fisiologia , Proteína 2 de Resposta de Crescimento Precoce/genética , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Lateralidade Funcional , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Localização de Som/efeitos dos fármacos , Estricnina/farmacologia , Valina/análogos & derivados , Valina/farmacologia
10.
J Neurosci ; 33(21): 9113-21, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699522

RESUMO

The central auditory brainstem provides an efferent projection known as the medial olivocochlear (MOC) system, which regulates the cochlear amplifier and mediates protection on exposure to loud sound. It arises from neurons of the ventral nucleus of the trapezoid body (VNTB), so control of neuronal excitability in this pathway has profound effects on hearing. The VNTB and the medial nucleus of the trapezoid body are the only sites of expression for the Kv2.2 voltage-gated potassium channel in the auditory brainstem, consistent with a specialized function of these channels. In the absence of unambiguous antagonists, we used recombinant and transgenic methods to examine how Kv2.2 contributes to MOC efferent function. Viral gene transfer of dominant-negative Kv2.2 in wild-type mice suppressed outward K(+) currents, increasing action potential (AP) half-width and reducing repetitive firing. Similarly, VNTB neurons from Kv2.2 knock-out mice (Kv2.2KO) also showed increased AP duration. Control experiments established that Kv2.2 was not expressed in the cochlea, so any changes in auditory function in the Kv2.2KO mouse must be of central origin. Further, in vivo recordings of auditory brainstem responses revealed that these Kv2.2KO mice were more susceptible to noise-induced hearing loss. We conclude that Kv2.2 regulates neuronal excitability in these brainstem nuclei by maintaining short APs and enhancing high-frequency firing. This safeguards efferent MOC firing during high-intensity sounds and is crucial in the mediation of protection after auditory overexposure.


Assuntos
Vias Auditivas/fisiologia , Cóclea/fisiologia , Perda Auditiva/prevenção & controle , Ruído/efeitos adversos , Núcleo Olivar/fisiologia , Canais de Potássio Shab/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Perda Auditiva/etiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Canais de Potássio Shab/deficiência , Canais de Potássio Shaw/metabolismo , Transfecção
11.
J Physiol ; 597(22): 5313, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31657457
12.
Hum Mol Genet ; 21(13): 2912-22, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466800

RESUMO

Synapse abnormalities in Huntington's disease (HD) patients can precede clinical diagnosis and neuron loss by decades. The polyglutamine expansion in the huntingtin (htt) protein that underlies this disorder leads to perturbations in many cellular pathways, including the disruption of Rab11-dependent endosomal recycling. Impairment of the small GTPase Rab11 leads to the defective formation of vesicles in HD models and may thus contribute to the early stages of the synaptic dysfunction in this disorder. Here, we employ transgenic Drosophila melanogaster models of HD to investigate anomalies at the synapse and the role of Rab11 in this pathology. We find that the expression of mutant htt in the larval neuromuscular junction decreases the presynaptic vesicle size, reduces quantal amplitudes and evoked synaptic transmission and alters larval crawling behaviour. Furthermore, these indicators of early synaptic dysfunction are reversed by the overexpression of Rab11. This work highlights a potential novel HD therapeutic strategy for early intervention, prior to neuronal loss and clinical manifestation of disease.


Assuntos
Proteínas de Drosophila/metabolismo , Doença de Huntington/genética , Junção Neuromuscular/fisiologia , Transmissão Sináptica , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Fenômenos Eletrofisiológicos , Proteína Huntingtina , Doença de Huntington/metabolismo , Larva/genética , Proteínas Associadas aos Microtúbulos/genética , Degeneração Neural , Sinapses/fisiologia , Potenciais Sinápticos , Proteínas rab de Ligação ao GTP/genética
13.
Proc Natl Acad Sci U S A ; 108(52): 21099-104, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160706

RESUMO

The p53 family member TAp73 is a transcription factor that plays a key role in many biological processes, including neuronal development. In particular, we have shown that p73 drives the expression of miR-34a, but not miR-34b and c, in mouse cortical neurons. miR-34a in turn modulates the expression of synaptic targets including synaptotagmin-1 and syntaxin-1A. Here we show that this axis is retained in mouse ES cells committed to differentiate toward a neurological phenotype. Moreover, overexpression of miR-34a alters hippocampal spinal morphology, and results in electrophysiological changes consistent with a reduction in spinal function. Therefore, the TAp73/miR-34a axis has functional relevance in primary neurons. These data reinforce a role for miR-34a in neuronal development.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , MicroRNAs/metabolismo , Neuritos/fisiologia , Proteínas Nucleares/metabolismo , Coluna Vertebral/citologia , Animais , Western Blotting , Diferenciação Celular/genética , Eletrofisiologia , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase em Tempo Real , Coluna Vertebral/fisiologia , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo
15.
J Neurophysiol ; 108(11): 2967-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22956801

RESUMO

Ca(V)2.1 Ca(2+) channels have a dominant and specific role in initiating fast synaptic transmission at central excitatory synapses, through a close association between release sites and calcium sensors. Familial hemiplegic migraine type 1 (FHM-1) is an autosomal-dominant subtype of migraine with aura, caused by missense mutations in the CACNA1A gene that encodes the α(1A) pore-forming subunit of Ca(V)2.1 channel. We used knock-in (KI) transgenic mice harboring the FHM-1 mutation R192Q to study the consequences of this mutation in neurotransmission at the giant synapse of the auditory system formed by the presynaptic calyx of Held terminal and the postsynaptic neurons of the medial nucleus of the trapezoid body (MNTB). Although synaptic transmission seems unaffected by low-frequency stimulation in physiological Ca(2+) concentration, we observed that with low Ca(2+) concentrations (<1 mM) excitatory postsynaptic currents (EPSCs) showed increased amplitudes in R192Q KI mice compared with wild type (WT), meaning significant differences in the nonlinear calcium dependence of nerve-evoked transmitter release. In addition, when EPSCs were evoked by broadened presynaptic action potentials (achieved by inhibition of K(+) channels) via Ca(v)2.1-triggered exocytosis, R192Q KI mice exhibited further enhancement of EPSC amplitude and charge compared with WT mice. Repetitive stimulation of afferent axons to the MNTB at different frequencies caused short-term depression of EPSCs that recovered significantly faster in R192Q KI mice than in WT mice. Faster recovery in R192Q KI mice was prevented by the calcium chelator EGTA-AM, pointing to enlarged residual calcium as a key factor in accelerating the replenishment of synaptic vesicles.


Assuntos
Canais de Cálcio Tipo P/genética , Canais de Cálcio Tipo Q/genética , Ataxia Cerebelar/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Transtornos de Enxaqueca/genética , Mutação de Sentido Incorreto , Terminações Pré-Sinápticas/metabolismo , Potenciais de Ação , Animais , Vias Auditivas , Cálcio/metabolismo , Canais de Cálcio Tipo N , Quelantes/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Exocitose , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios Aferentes/fisiologia , Ponte/citologia , Bloqueadores dos Canais de Potássio/farmacologia
16.
Elife ; 112022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510987

RESUMO

Kv3 potassium currents mediate rapid repolarisation of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high-frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarisation for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.


Assuntos
Sinapses , Transmissão Sináptica , Potenciais de Ação/fisiologia , Animais , Camundongos , Neurotransmissores , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
17.
Mol Pharmacol ; 79(5): 844-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325018

RESUMO

An initial stage of many neurodegenerative processes is associated with compromised synaptic function and precedes synapse loss, neurite fragmentation, and neuronal death. We showed previously that deficiency of heme, regulating many proteins of pharmacological importance, causes neurodegeneration of primary cortical neurons via N-methyl-d-aspartate receptor (NMDAR)-dependent suppression of the extracellular signal-regulated kinase 1/2 pathway. Here, we asked whether the reduction of heme causes synaptic perturbation before neurite fragmentation in neuronal cultures and investigated molecular mechanisms of synaptic dysfunction in these cells. We showed the change in the NR2B subunit phosphorylation that correlates with compromised NMDAR function after the reduction of regulatory heme and a rapid rescue of NR2B phosphorylation and NMDAR function by exogenous heme. Electrophysiological recordings demonstrated diminished NMDAR currents and NMDAR-mediated calcium influx after 24 h of inhibition of heme synthesis. These effects were reversed by treatment with heme; however, inhibition of the Src family kinases abolished the rescue effect of heme on NMDA-evoked currents. Diminished NMDAR current and Ca(2+) influx resulted in suppressed cGMP production and impairment of spine formation. Exogenous heme exerted rescue effects on NR2B tyrosine phosphorylation and NMDA-evoked currents within minutes, suggesting direct interactions within the NMDAR complex. These synaptic changes after inhibition of heme synthesis occurred at this stage without apparent dysfunction of major hemoproteins. We conclude that regulatory heme is necessary in maintaining NR2B phosphorylation and NMDAR function. NMDAR failure occurs before neurite fragmentation and may be a causal factor in neurodegeneration; this could suggest a route for an early pharmacological intervention.


Assuntos
Heme/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Primers do DNA , Feminino , Heme/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Fosforilação , Reação em Cadeia da Polimerase , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/metabolismo
18.
J Physiol ; 594(16): 4469-70, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27524791
19.
Front Neural Circuits ; 15: 759342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712124

RESUMO

Nitric oxide (NO) is of fundamental importance in regulating immune, cardiovascular, reproductive, neuromuscular, and nervous system function. It is rapidly synthesized and cannot be confined, it is highly reactive, so its lifetime is measured in seconds. These distinctive properties (contrasting with classical neurotransmitters and neuromodulators) give rise to the concept of NO as a "volume transmitter," where it is generated from an active source, diffuses to interact with proteins and receptors within a sphere of influence or volume, but limited in distance and time by its short half-life. In the auditory system, the neuronal NO-synthetizing enzyme, nNOS, is highly expressed and tightly coupled to postsynaptic calcium influx at excitatory synapses. This provides a powerful activity-dependent control of postsynaptic intrinsic excitability via cGMP generation, protein kinase G activation and modulation of voltage-gated conductances. NO may also regulate vesicle mobility via retrograde signaling. This Mini Review focuses on the auditory system, but highlights general mechanisms by which NO mediates neuronal intrinsic plasticity and synaptic transmission. The dependence of NO generation on synaptic and sound-evoked activity has important local modulatory actions and NO serves as a "volume transmitter" in the auditory brainstem. It also has potentially destructive consequences during intense activity or on spill-over from other NO sources during pathological conditions, when aberrant signaling may interfere with the precisely timed and tonotopically organized auditory system.


Assuntos
Vias Auditivas , Óxido Nítrico , Transdução de Sinais , Sinapses , Transmissão Sináptica
20.
J Physiol ; 588(Pt 17): 3187-200, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20519310

RESUMO

In this review we take a physiological perspective on the role of voltage-gated potassium channels in an identified neuron in the auditory brainstem. The large number of KCN genes for potassium channel subunits and the heterogeneity of the subunit combination into K(+) channels make identification of native conductances especially difficult. We provide a general pharmacological and biophysical profile to help identify the common voltage-gated K(+) channel families in a neuron. Then we consider the physiological role of each of these conductances from the perspective of the principal neuron in the medial nucleus of the trapezoid body (MNTB). The MNTB is an inverting relay, converting excitation generated by sound from one cochlea into inhibition of brainstem nuclei on the opposite side of the brain; this information is crucial for binaural comparisons and sound localization. The important features of MNTB action potential (AP) firing are inferred from its inhibitory projections to four key target nuclei involved in sound localization (which is the foundation of auditory scene analysis in higher brain centres). These are: the medial superior olive (MSO), the lateral superior olive (LSO), the superior paraolivary nucleus (SPN) and the nuclei of the lateral lemniscus (NLL). The Kv families represented in the MNTB each have a distinct role: Kv1 raises AP firing threshold; Kv2 influences AP repolarization and hyperpolarizes the inter-AP membrane potential during high frequency firing; and Kv3 accelerates AP repolarization. These actions are considered in terms of fidelity of transmission, AP duration, firing rates and temporal jitter. An emerging theme is activity-dependent phosphorylation of Kv channel activity and suggests that intracellular signalling has a dynamic role in refining neuronal excitability and homeostasis.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Animais , Vias Auditivas/química , Vias Auditivas/metabolismo , Vias Auditivas/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Neurônios/química , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA