RESUMO
The ideal laser source for nonlinear terahertz spectroscopy offers large versatility delivering both ultra-intense broadband single-cycle pulses and user-selectable multi-cycle pulses at narrow linewidths. Here we show a highly versatile terahertz laser platform providing single-cycle transients with tens of MV/cm peak field as well as spectrally narrow pulses, tunable in bandwidth and central frequency across 5 octaves at several MV/cm field strengths. The compact scheme is based on optical rectification in organic crystals of a temporally modulated laser beam. It allows up to 50 cycles and central frequency tunable from 0.5 to 7 terahertz, with a minimum width of 30 GHz, corresponding to the photon-energy width of ΔE=0.13 meV and the spectroscopic-wavenumber width of Δ(λ-1)=1.1 cm-1. The experimental results are excellently predicted by theoretical modelling. Our table-top source shows similar performances to that of large-scale terahertz facilities but offering in addition more versatility, multi-colour femtosecond pump-probe opportunities and ultralow timing jitter.
RESUMO
The propagation of an optical discharge (OD) along hollow-core optical fibers (HCFs) is investigated experimentally. Silica-based revolver-type HCFs filled with atmospheric air were used as test samples. We observed that the average propagation velocity of an OD along the HCF (VAV) depends on the properties of the medium around the silica structure of the fiber. It is shown that the value of VAV changes by approximately a factor of three, depending on whether the optical discharge is moving along a polymer coated or uncoated fiber. The value of VAV practically does not change when the polymer is replaced by an immersion liquid (such as glycerol) or liquid gallium. By analyzing the destruction region's patterns that appear in the fiber cladding after an OD propagation, we propose the physical picture of the phenomenon.
RESUMO
We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.
RESUMO
The results of high-field terahertz transmission experiments on n-doped silicon (carrier concentration of 8.7×1016 cm-3) are presented. We use terahertz pulses with electric field strengths up to 3.1 MV cm-1 and a pulse duration of 700 fs. A huge transmittance enhancement of â¼90 times is observed with increasing of the terahertz electric field strengths within the range of 1.5-3.1 MV cm-1.
RESUMO
Template matching algorithms represent a viable tool to locate particles in optical images. A crucial factor of the performance of these methods is the choice of the similarity measure. Recently, it was shown in [Gao and Helgeson, Opt. Express 22 (2014)] that the correlation coefficient (CC) leads to good results. Here, we introduce the mutual information (MI) as a nonlinear similarity measure and compare the performance of the MI and the CC for different noise scenarios. It turns out that the mutual information leads to superior results in the case of signal dependent noise. We propose a novel approach to estimate the velocity of particles which is applicable in imaging scenarios where the particles appear elongated due to their movement. By designing a bank of anisotropic templates supposed to fit the elongation of the particles we are able to reliably estimate their velocity and direction of motion out of a single image.
RESUMO
We report on high-field terahertz transients with 0.9-mJ pulse energy produced in a 400 mm² partitioned organic crystal by optical rectification of a 30-mJ laser pulse centered at 1.25 µm wavelength. The phase-locked single-cycle terahertz pulses cover the hard-to-access low-frequency range between 0.1 and 5 THz and carry peak fields of more than 42 MV/cm and 14 Tesla with the potential to reach over 80 MV/cm by choosing appropriate focusing optics. The scheme based on a Cr:Mg2SiO4 laser offers a high conversion efficiency of 3% using uncooled organic crystal. The collimated pump laser configuration provides excellent terahertz focusing conditions.
RESUMO
AIM: To study the effects exerted by argon microwave nonthermal plasma (NTP) on cell wall-lacking Mollicutes bacteria. METHODS AND RESULTS: 10(8) CFU ml(-1) agar plated Mycoplasma hominis and Acholeplasma laidlawii were treated with the nonthermal microwave argon plasma for 30-300 s. The maximal 10- and 100-fold drop was observed for A. laidlawii and Myc. hominis, respectively. Similarly treated Escherichia coli and Staphylococcus aureus demonstrated the 10(5) and 10(3) drop, respectively. Removal of cholesterol affected resistance of A. laidlawii. 10 mmol l(-1) antioxidant butylated hydroxytoluene decreased mortality by a factor of 25-200. UV radiation alone caused 25-85% mortality in comparison with the whole NTP. Exogenously added hydrogen peroxide H2O2 did not cause mortality. NTP treatment of Myc. hominis triggered growth of microcolonies, which were several tenfold smaller than a typical colony. CONCLUSIONS: Despite the lack of cell wall, A. laidlawii and Myc. hominis were more resistant to argon microwave NTP than other tested bacteria. Mycoplasma hominis formed microcolonies upon NTP treatment. A role of UV and active species was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: The first study of NTP effects on Mollicutes revealed importance of a membrane composition for bacterial resistance to NTP. New specific Myc. hominis morphological forms were observed. The study confirmed importance of the concerted action of reactive oxygen species (ROS) with UV and other plasma bioactive agents for NTP bactericidal action.
Assuntos
Acholeplasma laidlawii/efeitos dos fármacos , Antibacterianos/farmacologia , Mycoplasma hominis/efeitos dos fármacos , Gases em Plasma/farmacologia , Argônio , Colesterol/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Micro-Ondas , Mycoplasma hominis/crescimento & desenvolvimento , Mycoplasma hominis/ultraestrutura , Oxidantes/farmacologia , Raios UltravioletaRESUMO
String theory methods led to the hypothesis that the ratio of a shear viscosity coefficient to the volume density of entropy of any physical system has a lower bound. Systems with strong coupling have a small viscosity as compared to weakly coupled plasmas in which the viscosity is proportional to the mean free path. Here, we have estimated the fully ionized strongly coupled plasma viscosity based on the dynamic experimental data on electrical conductivity and have shown that the ratio of viscosity to entropy of the strongly coupled plasma is very close to that of the lower bound predicted by the string theory.
RESUMO
An experimental study of the kinematic viscosity has been carried out for dust particles of size 0.95 and 3.92 µm, in weakly ionized plasma over a wide range of dust coupling parameters. Measurements of viscosity for weakly correlated dusty-plasma systems are presented for the first time. An approximation for the estimation of viscosity constants is proposed. The measured viscosity constants are compared with theoretical estimates and numerical data.
Assuntos
Poeira , Modelos Químicos , Gases em Plasma/química , ViscosidadeRESUMO
The influence of quantum effects on the processes of initiation of combustion and detonation of hydrogen and acetylene near the low-temperature limits at elevated pressures is analyzed. A theoretical consideration which allows quantification of the quantum corrections to the rate constants of endothermic reactions associated with an increase in the high-energy tail of the equilibrium momentum distribution function at high pressures is presented. This quantum effect is caused by a manifestation of the principle of uncertainty for the energy of the colliding particles at a high frequency of collisions. It is shown that significant deviations of experimentally observed ignition and detonation delay time from the predictions of kinetic calculations are quite well described by the proposed quantum corrections. This general mechanism should be considered in the safety problem with emergency emissions of hydrogen at nuclear power stations, as well as problems of the safe production and storage of hydrogen and acetylene, which have a fundamental importance for industry and power engineering.
RESUMO
AIM: Study microbicidal activity of low temperature argon plasma (LTP) that is a stream of partially ionized argon having macroscopic temperature of the environment against Chlamydia trachomatis obligate intracellular parasites. Study viability of host cells in parallel. MATERIALS AND METHODS: McCoy line cells infected with C. trachomatis (Bu-434/L2 strain) were exposed to LTP obtained by using atmospheric pressure plasma SHF generator. Intracellular localization of chlamydiae was visualized by luminescent microscopy. RESULTS: Exposure of infected McCoy line cells resulted in the destruction of chlamydia inclusions and practically complete elimination of intracellular bacteria. At the same time LTP exposure did not result in immediate death of host cells, an insignificant reduction of the number of cells was observed 24 hours after the exposure to LTP. CONCLUSION: The effect of LTP for elimination of intracellular chlamydia without significant changes in viability of eukaryotic host cells was demonstrated.
Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Gases em Plasma , Argônio/química , Contagem de Células , Linhagem Celular , Sobrevivência Celular , Infecções por Chlamydia/microbiologia , Humanos , Viabilidade Microbiana , Microscopia de Fluorescência , Especificidade da Espécie , TemperaturaRESUMO
Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.
RESUMO
Results of application of LTP at atmospheric pressure as an antibacterial agent during the last decade are considered with reference to physicochemical mechanisms of its bactericidal action. The principles of designing modern LTP sources are described in conjunction with the results of LTP application against pathogenic bacteria in vitro and in biofilms. The possibility to destroy biofilm matrix by LTP is estimated along with the results of its testing for the treatment of acute and chronic wound surfaces. Prospects for the development of "plasma medicine" in this country and abroad are discussed with special emphasis on its advantages, such as the absence of long-acting toxic compounds, small probability of spontaneous mutations accounting for resistance to LTP, relatively low cost of LTP sources, independence of LTP effect of the surface relief, painless application.
Assuntos
Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Antissepsia , Gases em Plasma , Infecção dos Ferimentos , Animais , Antissepsia/instrumentação , Antissepsia/métodos , Biofilmes/efeitos dos fármacos , Ensaios Clínicos como Assunto , Contagem de Colônia Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologiaRESUMO
Microparticle suspensions in a polarity-switched discharge plasma of the Plasmakristall-4 facility on board the International Space Station exhibit string-like order. As pointed out in [Phys. Rev. Research 2, 033314 (2020)2643-156410.1103/PhysRevResearch.2.033314], the string-order is subject to evolution on the timescale of minutes at constant gas pressure and constant parameters of polarity switching. We perform a detailed analysis of this evolution using the pair correlations and length spectrum of the string-like clusters (SLCs). Average exponential decay rate of the SLC length spectrum is used as a measure of string order. The analysis shows that the improvement of the string-like order is accompanied by the decrease of the thickness of the microparticle suspension, microparticle number density, and total amount of microparticles in the field of view. This suggests that the observed long-term evolution of the string-like order is caused by the redistribution of the microparticles, which significantly modifies the plasma conditions.
RESUMO
Resonant scattering of electromagnetic waves is a widely studied phenomenon with a vast range of applications that span completely different fields, from astronomy or meteorology to spectroscopy and optical circuitry. Despite being subject of intensive research for many decades, new fundamental aspects are still being uncovered, in connection with emerging areas, such as metamaterials and metasurfaces or quantum and topological optics, to mention some. In this work, we demonstrate yet one more novel phenomenon arising in the scattered near field of medium sized objects comprising high refractive index materials, which allows the generation of colossal local magnetic fields. In particular, we show that GHz radiation illuminating a high refractive index ceramic sphere creates instant magnetic near-fields comparable to those in neutron stars, opening up a new paradigm for creation of giant magnetic fields on the millimeter's scale.
RESUMO
Using experiments and combining theory and computer simulations, we show that binary complex plasmas are particularly good model systems to study the kinetics of fluid-fluid demixing at the "atomistic" (individual particle) level. The essential parameters of interparticle interactions in complex plasmas, such as the interaction range(s) and degree of nonadditivity, can be varied significantly, which allows systematic investigations of different demixing regimes. The critical role of competition between long-range and short-range interactions at the initial stage of the spinodal decomposition is discussed.
RESUMO
An experimental observation of a detonation wave driven by the energy of condensation of supersaturated carbon vapor is reported. The carbon vapor was formed by the thermal decay of unstable carbon suboxide C3O2 behind shock waves in mixtures containing 10-30% C3O2 in Ar. In the mixture 10% C3O2+Ar the insufficient heat release resulted in a regime of overdriven detonation. In the mixture 20% C3O2+Ar measured values of the pressure and wave velocity coincident with calculated Chapman-Jouguet parameters were attained. In the richest mixture 30% C3O2+Ar an excess heat release caused the slowing down of the condensation rate and the regime of underdriven detonation was observed.
RESUMO
Dust-particles charging in a low-pressure glow discharge was investigated theoretically. The dust-particle charge was found on the basis of a developed self-consistent model taking into account the nonequilibrium character of electron distribution function and the formation of an ionic coat composed of bound or trapped ions around the dust particle. The dust-particle charge, the radial distributions of electron density, free and trapped ions densities, and the distribution of electrostatic potential were found. It was shown that the non-Maxwellian electron distribution function and collisional flux of trapped ions both reduce the dust-particle charge in comparison with that received with the help of the conventional orbital motion limited (OML) model. However, in rare collisional regimes in plasma when the collisional flux is negligible, the formation of ionic coat around a particle leads to a shielding of the proper charge of a dust particle. In low-pressure experiments, it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ions. The calculated effective dust particle charge is in fairly good agreement with the experimental measurements of dust-particle charge dependence on gas pressure.
RESUMO
This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has suggested an additional very important application of the LHC, namely, studies of HED states in matter.
RESUMO
New data for the reflectivity of shock-compressed xenon plasmas at pressures of 10-12 GPa at large incident angles are presented. In addition, measurements have been performed at different densities. These data allow to analyze the free-electron density profile across the shock wave front. Assuming a Fermi-like density profile, the width of the front layer is inferred. The reflectivity coefficients for the s- and p-polarized waves are calculated. The influence of atoms, which was taken into account on the level of the collision frequency, proves to be essential for the understanding of the reflection process. Subsequently, a unique density profile is sufficient to obtain good agreement with the experimental data at different incident angles and at all investigated optical laser frequencies. Reflectivity measurements for different densities allow to determine the dependence of shock-front density profiles on the plasma parameters. As a result, it was found that the width of the front layer increases with decreasing density.