Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nucleic Acids Res ; 51(8): 3988-3999, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36951109

RESUMO

High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência de Prolina , Humanos , RNA de Transferência de Prolina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Prolina/química , Aminoacilação de RNA de Transferência , Códon , Domínio Catalítico
2.
Nucleic Acids Res ; 50(3): 1753-1769, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35104890

RESUMO

Cre recombinase selectively recognizes DNA and prevents non-specific DNA cleavage through an orchestrated series of assembly intermediates. Cre recombines two loxP DNA sequences featuring a pair of palindromic recombinase binding elements and an asymmetric spacer region, by assembly of a tetrameric synaptic complex, cleavage of an opposing pair of strands, and formation of a Holliday junction intermediate. We used Cre and loxP variants to isolate the monomeric Cre-loxP (54 kDa), dimeric Cre2-loxP (110 kDa), and tetrameric Cre4-loxP2 assembly intermediates, and determined their structures using cryo-EM to resolutions of 3.9, 4.5 and 3.2 Å, respectively. Progressive and asymmetric bending of the spacer region along the assembly pathway enables formation of increasingly intimate interfaces between Cre protomers and illuminates the structural bases of biased loxP strand cleavage order and half-the-sites activity. Application of 3D variability analysis to the tetramer data reveals constrained conformational sampling along the pathway between protomer activation and Holliday junction isomerization. These findings underscore the importance of protein and DNA flexibility in Cre-mediated site selection, controlled activation of alternating protomers, the basis for biased strand cleavage order, and recombination efficiency. Such considerations may advance development of site-specific recombinases for use in gene editing applications.


Assuntos
DNA Cruciforme , Proteínas Virais , Sítios de Ligação , Microscopia Crioeletrônica , DNA/química , Integrases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Subunidades Proteicas/genética , Recombinação Genética , Proteínas Virais/metabolismo
3.
Nucleic Acids Res ; 50(14): 8154-8167, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848927

RESUMO

RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.


Assuntos
Proteínas Arqueais , Methanocaldococcus , Ribonuclease P , Proteínas Arqueais/metabolismo , Methanocaldococcus/enzimologia , Methanocaldococcus/genética , Conformação Proteica , RNA de Transferência/metabolismo , Ribonuclease P/metabolismo , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 117(40): 24849-24858, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32968014

RESUMO

Mechanistic understanding of DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase. Transverse relaxation-optimized spectroscopy (TROSY) NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTD and CreCat) to be structurally independent. Amide 15N relaxation measurements of the CreCat domain reveal fast-timescale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity via trans protein-protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and intermolecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative autoinhibitory conformation for the αN region of free Cre, wherein it packs in cis over the protein DNA binding surface and active site. Moreover, binding to loxP DNA induces a conformational change that dislodges the C terminus, resulting in a cis-to-trans switch that is likely to enable protein-protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a reexamination of the mechanisms by which this widely utilized gene-editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.


Assuntos
DNA/metabolismo , Integrases/química , Integrases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , Integrases/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
5.
Biochemistry ; 61(2): 67-76, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34985267

RESUMO

The Cre-loxP gene editing tool enables site-specific editing of DNA without leaving lesions that must be repaired by error-prone cellular processes. Cre recombines two 34-bp loxP DNA sites that feature a pair of palindromic recombinase-binding elements flanking an asymmetric 8-bp spacer region, via assembly of a tetrameric intasome complex and formation of a Holliday junction intermediate. Recombination proceeds by coordinated nucleophilic attack by pairs of catalytic tyrosine residues on specific phosphodiester bonds in the spacer regions of opposing strands. Despite not making base-specific contacts with the asymmetric spacer region of the DNA, Cre exhibits a preference for initial cleavage on one of the strands, suggesting that intrinsic properties of the uncontacted 8-bp spacer region give rise to this preference. Furthermore, little is known about the structural and dynamic features of the loxP spacer that make it a suitable target for Cre. To enable NMR spectroscopic studies of the spacer, we have aimed to identify a fragment of the 34-bp loxP site that retains the structural features of the spacer while minimizing the spectral crowding and line-broadening seen in longer oligonucleotides. Sequence-specific chemical shift differences between spacer oligos of different lengths, and of a mutant that inverts strand cleavage order, reveal how both nearest-neighbor and next-nearest-neighbor effects dominate the chemical environment experienced by the spacer. We have identified a 16-bp oligonucleotide that preserves the structural environment of the spacer, setting the stage for NMR-based structure determination and dynamics investigations.


Assuntos
Bacteriófago P1/química , DNA Intergênico/química , Oligonucleotídeos/química , Bacteriófago P1/metabolismo , Sequência de Bases , DNA Intergênico/metabolismo , Integrases/química , Integrases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
6.
Biochemistry ; 59(27): 2518-2527, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32558551

RESUMO

Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding, it is necessary to define, at a microscopic level, the thermodynamic consequences of binding of each ligand to its energetically coupled site(s). However, extracting these microscopic constants is difficult for macromolecules with more than two binding sites, because the observable [e.g., nuclear magnetic resonance (NMR) chemical shift changes, fluorescence, and enthalpy] can be altered by allostery, thereby distorting its proportionality to site occupancy. Native mass spectrometry (MS) can directly quantify the populations of homo-oligomeric protein species with different numbers of bound ligands, provided the populations are proportional to ion counts and that MS-compatible electrolytes do not alter the overall thermodynamics. These measurements can help decipher allosteric mechanisms by providing unparalleled access to the statistical thermodynamic partition function. We used native MS (nMS) to study the cooperative binding of tryptophan (Trp) to Bacillus stearothermophilus trp RNA binding attenuation protein (TRAP), a ring-shaped homo-oligomeric protein complex with 11 identical binding sites. MS-compatible solutions did not significantly perturb protein structure or thermodynamics as assessed by isothermal titration calorimetry and NMR spectroscopy. Populations of Trpn-TRAP11 states were quantified as a function of Trp concentration by nMS. The population distributions could not be explained by a noncooperative binding model but were described well by a mechanistic nearest-neighbor cooperative model. Nonlinear least-squares fitting yielded microscopic thermodynamic constants that define the interactions between neighboring binding sites. This approach may be applied to quantify thermodynamic cooperativity in other ring-shaped proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Geobacillus stearothermophilus/enzimologia , Espectrometria de Massas/métodos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Regulação Alostérica , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Fenômenos Biofísicos , Modelos Moleculares , Proteínas de Ligação a RNA/isolamento & purificação , Relação Estrutura-Atividade , Fatores de Transcrição/isolamento & purificação
7.
Mol Microbiol ; 112(6): 1701-1717, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515876

RESUMO

In Schizosaccharomyces pombe, the expression of the zrt1 zinc uptake gene is tightly regulated by zinc status. When intracellular zinc levels are low, zrt1 is highly expressed. However, when zinc levels are high, transcription of zrt1 is blocked in a manner that is dependent upon the transcription factor Loz1. To gain additional insight into the mechanism by which Loz1 inhibits gene expression in high zinc, we used RNA-seq to identify Loz1-regulated genes, and ChIP-seq to analyze the recruitment of Loz1 to target gene promoters. We find that Loz1 is recruited to the promoters of 27 genes that are also repressed in high zinc in a Loz1-dependent manner. We also find that the recruitment of Loz1 to the majority of target gene promoters is dependent upon zinc and the motif 5'-CGN(A/C)GATCNTY-3', which we have named the Loz1 response element (LRE). Using reporter assays, we show that LREs are both required and sufficient for Loz1-mediated gene repression, and that the level of gene repression is dependent upon the number and sequence of LREs. Our results elucidate the Loz1 regulon in fission yeast and provide new insight into how eukaryotic cells are able to respond to changes in zinc availability in the environment.


Assuntos
Elementos de Resposta/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Homeostase , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética
8.
Bioorg Med Chem ; 28(20): 115711, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069067

RESUMO

Cyclic peptides are capable of binding to challenging targets (e.g., proteins involved in protein-protein interactions) with high affinity and specificity, but generally cannot gain access to intracellular targets because of poor membrane permeability. In this work, we discovered a conformationally constrained cyclic cell-penetrating peptide (CPP) containing a d-Pro-l-Pro motif, cyclo(AFΦrpPRRFQ) (where Φ is l-naphthylalanine, r is d-arginine, and p is d-proline). The structural constraints provided by cyclization and the d-Pro-l-Pro motif permitted the rational design of cell-permeable cyclic peptides of large ring sizes (up to 16 amino acids). This strategy was applied to design a potent, cell-permeable, and biologically active cyclic peptidyl inhibitor, cyclo(YpVNFΦrpPRR) (where Yp is l-phosphotyrosine), against the Grb2 SH2 domain. Multidimensional NMR spectroscopic and circular dichroism analyses revealed that the cyclic CPP as well as the Grb2 SH2 inhibitor assume a predominantly random coil structure but have significant ß-hairpin character surrounding the d-Pro-l-Pro motif. These results demonstrate cyclo(AFΦrpPRRFQ) as an effective CPP for endocyclic (insertion of cargo into the CPP ring) or exocyclic delivery of biological cargos (attachment of cargo to the Gln side chain).


Assuntos
Peptídeos Penetradores de Células/farmacologia , Dipeptídeos/farmacologia , Desenho de Fármacos , Proteína Adaptadora GRB2/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Proteína Adaptadora GRB2/isolamento & purificação , Proteína Adaptadora GRB2/metabolismo , Humanos , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Domínios de Homologia de src/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 114(33): E6774-E6783, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768811

RESUMO

Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Biossíntese de Proteínas/genética , RNA de Transferência de Prolina/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Caulobacter crescentus/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , Edição de RNA , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Especificidade por Substrato
10.
Proc Natl Acad Sci U S A ; 113(8): 2086-91, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858406

RESUMO

The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the γ-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein-protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded ß sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that γ-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins.


Assuntos
Integrases/química , Vírus da Leucemia Murina/enzimologia , Proteínas Nucleares/química , Dobramento de Proteína , Fatores de Transcrição/química , Proteínas Virais/química , Motivos de Aminoácidos , Proteínas de Ciclo Celular , Humanos , Integrases/genética , Integrases/metabolismo , Vírus da Leucemia Murina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Biophys J ; 112(7): 1328-1338, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402876

RESUMO

Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding it is necessary to define at a microscopic level the structural and thermodynamic consequences of binding of each ligand to its allosterically coupled site(s). However, dynamic sampling of alternative conformations (microstates) in allosteric molecules complicates interpretation of both structural and thermodynamic data. Isothermal titration calorimetry has the potential to directly quantify the thermodynamics of allosteric interactions, but usually falls short of enabling mechanistic insight. This is because 1) its measurements reflect the sum of overlapping caloric processes involving binding-linked population shifts within and between microstates, and 2) data are generally fit with phenomenological binding polynomials that are underdetermined. Nevertheless, temperature-dependent binding data have the potential to resolve overlapping thermodynamic processes, while mechanistically constrained models enable hypothesis testing and identification of informative parameters. We globally fit temperature-dependent isothermal titration calorimetry data for binding of 11 tryptophan ligands to the homo-undecameric trp RNA-binding Attenuation Protein from Bacillus stearothermophilus using nearest-neighbor statistical thermodynamic models. This approach allowed us to distinguish alternative nearest-neighbor interaction models, and quantifies the thermodynamic contribution of neighboring ligands to individual binding sites. We also perform conventional Hill equation modeling and illustrate how comparatively limited it is in quantitative or mechanistic value. This work illustrates the potential of mechanistically constrained global fitting of binding data to yield the microscopic thermodynamic parameters essential for deciphering mechanisms of cooperativity in a wide range of ligand-regulated homo-oligomeric assemblies.


Assuntos
Calorimetria , Modelos Moleculares , Temperatura , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Técnicas Biossensoriais , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triptofano/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(9): 3442-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550461

RESUMO

The control of tryptophan production in Bacillus is a paradigmatic example of gene regulation involving the interplay of multiple protein and nucleic acid components. Central to this combinatorial mechanism are the homo-oligomeric proteins TRAP (trp RNA-binding attenuation protein) and anti-TRAP (AT). TRAP forms undecameric rings, and AT assembles into triskelion-shaped trimers. Upon activation by tryptophan, the outer circumference of the TRAP ring binds specifically to a series of tandem sequences present in the 5' UTR of RNA transcripts encoding several tryptophan metabolism genes, leading to their silencing. AT, whose expression is up-regulated upon tryptophan depletion to concentrations not exceeding a ratio of one AT trimer per TRAP 11-mer, restores tryptophan production by binding activated TRAP and preventing RNA binding. How the smaller AT inhibitor prevents RNA binding at such low stoichiometries has remained a puzzle, in part because of the large RNA-binding surface on the tryptophan-activated TRAP ring and its high affinity for RNA. Using X-ray scattering, hydrodynamic, and mass spectrometric data, we show that the polydentate action of AT trimers can condense multiple intact TRAP rings into large heterocomplexes, effectively reducing the available contiguous RNA-binding surfaces. This finding reveals an unprecedented mechanism for substoichiometric inhibition of a gene-regulatory protein, which may be a widespread but underappreciated regulatory mechanism in pathways that involve homo-oligomeric or polyvalent components.


Assuntos
Bacillus/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Complexos Multiproteicos/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Bacillus/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espalhamento a Baixo Ângulo
13.
Bioinformatics ; 31(12): 1951-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25673340

RESUMO

MOTIVATION: Macromolecular structures and interactions are intrinsically heterogeneous, temporally adopting a range of configurations that can confound the analysis of data from bulk experiments. To obtain quantitative insights into heterogeneous systems, an ensemble-based approach can be employed, in which predicted data computed from a collection of models is compared to the observed experimental results. By simultaneously fitting orthogonal structural data (e.g. small-angle X-ray scattering, nuclear magnetic resonance residual dipolar couplings, dipolar electron-electron resonance spectra), the range and population of accessible macromolecule structures can be probed. RESULTS: We have developed MESMER, software that enables the user to identify ensembles that can recapitulate experimental data by refining thousands of component collections selected from an input pool of potential structures. The MESMER suite includes a powerful graphical user interface (GUI) to streamline usage of the command-line tools, calculate data from structure libraries and perform analyses of conformational and structural heterogeneity. To allow for incorporation of other data types, modular Python plugins enable users to compute and fit data from nearly any type of quantitative experimental data. RESULTS: Conformational heterogeneity in three macromolecular systems was analyzed with MESMER, demonstrating the utility of the streamlined, user-friendly software. AVAILABILITY AND IMPLEMENTATION: https://code.google.com/p/mesmer/


Assuntos
Biologia Computacional/métodos , Complexos Multiproteicos/química , Conformação Proteica , Software , Fosfatase Ácida/química , Calmodulina/química , Simulação por Computador , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Humanos , Isoenzimas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Espalhamento a Baixo Ângulo , Fosfatase Ácida Resistente a Tartarato
14.
Nucleic Acids Res ; 42(21): 13328-38, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361963

RESUMO

The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg(2+)-dependent 5' maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe-modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae-EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis.


Assuntos
Proteínas Arqueais/química , Pyrococcus furiosus , RNA Arqueal/química , Proteínas de Ligação a RNA/química , Ribonuclease P/química , Substituição de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , Pyrococcus furiosus/genética , RNA Arqueal/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease P/metabolismo
15.
Nucleic Acids Res ; 42(8): 4868-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24520112

RESUMO

The importance of understanding the molecular mechanisms of murine leukemia virus (MLV) integration into host chromatin is highlighted by the development of MLV-based vectors for human gene-therapy. We have recently identified BET proteins (Brd2, 3 and 4) as the main cellular binding partners of MLV integrase (IN) and demonstrated their significance for effective MLV integration at transcription start sites. Here we show that recombinant Brd4, a representative of the three BET proteins, establishes complementary high-affinity interactions with MLV IN and mononucleosomes (MNs). Brd4(1-720) but not its N- or C-terminal fragments effectively stimulate MLV IN strand transfer activities in vitro. Mass spectrometry- and NMR-based approaches have enabled us to map key interacting interfaces between the C-terminal domain of BRD4 and the C-terminal tail of MLV IN. Additionally, the N-terminal fragment of Brd4 binds to both DNA and acetylated histone peptides, allowing it to bind tightly to MNs. Comparative analyses of the distributions of various histone marks along chromatin revealed significant positive correlations between H3- and H4-acetylated histones, BET protein-binding sites and MLV-integration sites. Our findings reveal a bimodal mechanism for BET protein-mediated MLV integration into select chromatin locations.


Assuntos
Integrases/metabolismo , Vírus da Leucemia Murina/enzimologia , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , DNA/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Integrases/química , Vírus da Leucemia Murina/fisiologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Integração Viral
16.
Nucleic Acids Res ; 41(6): 3924-36, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396443

RESUMO

Lens epithelium-derived growth factor (LEDGF/p75) tethers lentiviral preintegration complexes (PICs) to chromatin and is essential for effective HIV-1 replication. LEDGF/p75 interactions with lentiviral integrases are well characterized, but the structural basis for how LEDGF/p75 engages chromatin is unknown. We demonstrate that cellular LEDGF/p75 is tightly bound to mononucleosomes (MNs). Our proteomic experiments indicate that this interaction is direct and not mediated by other cellular factors. We determined the solution structure of LEDGF PWWP and monitored binding to the histone H3 tail containing trimethylated Lys36 (H3K36me3) and DNA by NMR. Results reveal two distinct functional interfaces of LEDGF PWWP: a well-defined hydrophobic cavity, which selectively interacts with the H3K36me3 peptide and adjacent basic surface, which non-specifically binds DNA. LEDGF PWWP exhibits nanomolar binding affinity to purified native MNs, but displays markedly lower affinities for the isolated H3K36me3 peptide and DNA. Furthermore, we show that LEDGF PWWP preferentially and tightly binds to in vitro reconstituted MNs containing a tri-methyl-lysine analogue at position 36 of H3 and not to their unmodified counterparts. We conclude that cooperative binding of the hydrophobic cavity and basic surface to the cognate histone peptide and DNA wrapped in MNs is essential for high-affinity binding to chromatin.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Nucleossomos/química , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
17.
Nucleic Acids Res ; 40(10): 4666-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22298511

RESUMO

RNase P, which catalyzes tRNA 5'-maturation, typically comprises a catalytic RNase P RNA (RPR) and a varying number of RNase P proteins (RPPs): 1 in bacteria, at least 4 in archaea and 9 in eukarya. The four archaeal RPPs have eukaryotic homologs and function as heterodimers (POP5•RPP30 and RPP21•RPP29). By studying the archaeal Methanocaldococcus jannaschii RPR's cis cleavage of precursor tRNA(Gln) (pre-tRNA(Gln)), which lacks certain consensus structures/sequences needed for substrate recognition, we demonstrate that RPP21•RPP29 and POP5•RPP30 can rescue the RPR's mis-cleavage tendency independently by 4-fold and together by 25-fold, suggesting that they operate by distinct mechanisms. This synergistic and preferential shift toward correct cleavage results from the ability of archaeal RPPs to selectively increase the RPR's apparent rate of correct cleavage by 11,140-fold, compared to only 480-fold for mis-cleavage. Moreover, POP5•RPP30, like the bacterial RPP, helps normalize the RPR's rates of cleavage of non-consensus and consensus pre-tRNAs. We also show that archaeal and eukaryal RNase P, compared to their bacterial relatives, exhibit higher fidelity of 5'-maturation of pre-tRNA(Gln) and some of its mutant derivatives. Our results suggest that protein-rich RNase P variants might have evolved to support flexibility in substrate recognition while catalyzing efficient, high-fidelity 5'-processing.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Glutamina/metabolismo , Ribonuclease P/metabolismo , Bactérias/enzimologia , Eucariotos/enzimologia , Conformação de Ácido Nucleico , Clivagem do RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA de Transferência de Glutamina/química
18.
Angew Chem Int Ed Engl ; 53(43): 11483-7, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25195671

RESUMO

We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly.


Assuntos
Espectrometria de Massas/métodos , Pyrococcus furiosus/enzimologia , Ribonuclease P/metabolismo , Catálise , Ribonuclease P/química
19.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798368

RESUMO

The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the µs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.

20.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746386

RESUMO

Homotropic cooperativity is widespread in biological regulation. The homo-oligomeric ring-shaped trp RNA binding attenuation protein (TRAP) from bacillus binds multiple tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the trp operon mRNA. Ligand-activated binding to this specific RNA sequence regulates downstream biosynthesis of Trp in a feedback loop. Characterized TRAP variants form 11- or 12-mer rings and bind Trp at the interface between adjacent subunits. Various studies have shown that a pair of loops that gate each Trp binding site is flexible in the absence of the ligand and become ordered upon ligand binding. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity. To establish a solid basis for describing nearest-neighbor cooperativity we engineered dodecameric (12-mer) TRAP variants constructed with two subunits connected by a flexible linker (dTRAP). We mutated one of the protomers such that only every other site was competent for Trp binding. Thermodynamic and structural studies using native mass spectrometry, NMR spectroscopy, and cryo-EM provided unprecedented detail into the thermodynamic and structural basis for the observed ligand binding cooperativity. Such insights can be useful for understanding allosteric control networks and for the development of new ones with defined ligand sensitivity and regulatory control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA