Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Future Sci OA ; 7(5): FSO692, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-34046194

RESUMO

Antimicrobial resistance (AMR) threatens to reverse the essential benefits of antibiotics, not only in humans, where decades of advancements in healthcare outcomes are endangered, but also in the food production industry. As the world moves toward Sustainable Development Goals, food safety is a critical element to improve and strengthen global health, and ensure sustainable development. Emergence of AMR in the food production industry represents a serious risk for exposed workers, their relatives and consumers. This perspective presents the challenge of AMR through the lens of food safety, by highlighting its multisectoral and multidimensional implications not only on the Sustainable Development Goals for food safety and public health but also on food security, animal health and welfare, the environment and climate, and socioeconomic development.

2.
Future Sci OA ; 7(8): FSO736, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34290883

RESUMO

As of 23 April 2021, the outbreak of COVID-19 claimed around 150 million confirmed cases with over 3 million deaths worldwide. Yet, an even more serious but silent pandemic, that of antimicrobial resistance (AMR), is likely complicating the outcome of COVID-19 patients. This study discusses the current knowledge on the emergence of the SARS-CoV-2 and highlights the likely contribution of the COVID-19 pandemic on the escalation of AMR. COVID-19 engenders extensive antibiotic overuse and misuse, and will undoubtedly and substantially increase AMR rates worldwide. Amid the expanding COVID-19 pandemic, policymakers should consider the hidden threat of AMR much more, which may well be enhanced through improper use of antibiotics to treat patients with severe COVID-19 infection.

3.
Front Microbiol ; 9: 188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479347

RESUMO

Background and objectives: Extended-spectrum ß-lactamase (ESBL)-producing Klebsiella pneumoniae is a serious public health issue globally. In this study, the antibiotic resistance genes, virulence factors, mobile genetic elements, and genetic lineages of circulating ESBL-producing K. pneumoniae strains isolated from pigs and humans in Cameroonian abattoirs were investigated using whole genome sequencing (WGS), in order to ascertain zoonotic transmission (viz. from animals to humans and/or vice-versa) in the food chain. Methods: During March-October 2016, 288 nasal and rectal pooled samples from 432 pigs as well as nasal and hand swabs from 82 humans were collected from Cameroon and South Africa. Seven ESBL-producing K. pneumoniae circulating in Cameroonian pig abattoirs were selected and their genomic DNA sequenced using an Illumina MiSeq platform. Generated reads were de novo assembled using the Qiagen CLC Genomics Workbench and SPAdes. The assembled contigs were annotated using RAST and antibiotic resistance genes, virulence factors, plasmids, and bacteriophages were identified with ResFinder, Virulence Finder, PlasmidFinder, and PHAST, respectively. Results: ESBL-producing K. pneumoniae were detected in pigs (34/158; 21.52%) and exposed workers (8/71; 11.26%) in Cameroon only. The circulating K. pneumoniae strains were dominated principally by the sequence type (ST) 14 and 39. In addition, the "high-risk" ST307 clone and two novel STs assigned ST2958 and ST2959 were detected. Genomic analysis identified various antibiotic resistance genes associated with resistance to ß-lactams, aminoglycosides, fluoroquinolones, macrolide, lincosamide and streptogramins, rifampicin, sulfonamides, trimethoprim, phenicols and tetracycline. None of the ESBL-producing K. pneumoniae harbored virulence genes. Intermingled K. pneumoniae populations were observed between pig- and human-source within and across abattoirs in the country. Conclusion: Our study shows that ESBL-producing K. pneumoniae is actively disseminating in pigs and occupationally exposed workers in Cameroonian pig abattoirs and is probably underestimated in the absence of molecular epidemiological studies. It suggests pigs, abattoir workers and food products as potential reservoirs and sources of zoonotic transmission in Cameroon. Our findings underline the existence of a potential unheeded food safety and public health threat associated with these resistant strains and reinforce the crucial importance of implementing appropriate food safety measures and promoting rational antibiotic use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA