RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a significant cause of cancer-associated mortality, with a rising global incidence. A paucity of strong predictive risk factors mean screening programmes are difficult to implement. Historically, a lack of identifiable and actionable driver mutations, coupled with a relatively immunosuppressed tumour microenvironment, has led to a reliance on cytotoxic chemotherapy. The NAPOLI-3 trial has reported data supporting consideration of NALIRIFOX as a new first-line standard of care. Kirsten Rat Sarcoma Virus (KRAS) G12D mutations are present in >90% of all PDAC's; exciting breakthroughs in small molecule inhibitors targeting KRAS G12D may open new modalities of treatment, and therapies targeting multiple KRAS mutations are also in early clinical trials. Although immunotherapy strategies to date have been disappointing, combination with chemotherapy and/or small molecule inhibitors hold promise and warrant further exploration.
Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Metástase Neoplásica , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoterapia/métodosRESUMO
Background: Biliary tract cancers (BTCs) are aggressive in nature, often presenting asymptomatically until they are diagnosed at an advanced stage. Surgical resection or liver transplantation are potential curative options. However, a large proportion of patients present with incurable locally advanced or metastatic disease and most of these patients are only eligible for palliative chemotherapy or best supportive care. More recently, targeted therapies have proven beneficial in a molecularly selected subgroup of patients with cholangiocarcinoma who have progressed on previous lines of systemic treatment. However, only a minority of patients with BTCs whose tumours harbour specific molecular alterations can access these therapies. Methods: In relation to ADCs, studies regarding use of antibody-drug conjugates in cancer, particularly in BTCs, were searched in Embase (1974 to 2024) and Ovid MEDLINE(R) (1946 to 2024) to obtain relevant articles. Examples of current clinical trials utilising ADC treatment in BTCs were extracted from the ClinicalTrials.gov trial registry. Conclusions: Overall, this review has highlighted that ADCs have shown encouraging outcomes in cancer therapy, and this should lead to further research including in BTCs, where treatment options are often limited. The promising results observed with ADCs in various cancers underscore their potential as a transformative approach in oncology, warranting continued exploration and development and the need for education on the management of their specific toxicities. By addressing current challenges and optimising ADC design and application, future studies could potentially improve treatment outcomes for patients with BTCs and beyond, potentially in both early and advanced stage settings.
RESUMO
Molecular subtypes of Small Cell Lung Cancer (SCLC) have been described based on differential expression of transcription factors (TFs) ASCL1, NEUROD1, POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC Circulating tumour cell-Derived eXplant (CDX) model biobank. Here we show that ATOH1 protein was detected in 7/81 preclinical models and 16/102 clinical samples of SCLC. In CDX models, ATOH1 directly regulated neurogenesis and differentiation programs consistent with roles in normal tissues. In ex vivo cultures of ATOH1-positive CDX, ATOH1 was required for cell survival. In vivo, ATOH1 depletion slowed tumour growth and suppressed liver metastasis. Our data validate ATOH1 as a bona fide oncogenic driver of SCLC with tumour cell survival and pro-metastatic functions. Further investigation to explore ATOH1 driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.
RESUMO
The treatment of advanced unresectable HCC (aHCC) remains a clinical challenge, with limited therapeutic options and poor prognosis. The results of IMbrave150 and HIMALAYA have changed the treatment paradigm for HCC and established immune checkpoint inhibition (ICI), either combined with anti-angiogenic therapy or dual ICI, as preferred first-line therapy for eligible patients with aHCC. Numerous other combination regimens involving ICI are under investigation with the aim of improving the tumour response and survival of patients with all stages of HCC. This review will explore the current evidence for ICI in patients with advanced HCC and discuss future directions, including the unmet clinical need for predictive biomarkers to facilitate patient selection, the effects of cirrhosis aetiology on response to ICI, and the safety of its use in patients with impaired liver function.
RESUMO
Background: Trastuzumab and chemotherapy is the standard first-line treatment in human epidermal growth factor receptor 2 (HER2)-positive advanced gastro-oesophageal cancer. The objective was to develop a predictive model for overall survival (OS) and progression-free survival (PFS) in patients treated with trastuzumab. Methods: Patients with HER2-positive advanced gastro-oesophageal adenocarcinoma (AGA) from the Spanish Society of Medical Oncology (SEOM)-AGAMENON registry and treated first line with trastuzumab and chemotherapy between 2008 and 2021 were included. The model was externally validated in an independent series (The Christie NHS Foundation Trust, Manchester, UK). Results: In all, 737 patients were recruited (AGAMENON-SEOM, n = 654; Manchester, n = 83). Median PFS and OS in the training cohort were 7.76 [95% confidence interval (CI), 7.13-8.25] and 14.0 months (95% CI, 13.0-14.9), respectively. Six covariates were significantly associated with OS: neutrophil-to-lymphocyte ratio, Eastern Cooperative Oncology Group performance status, Lauren subtype, HER2 expression, histological grade and tumour burden. The AGAMENON-HER2 model demonstrated adequate calibration and fair discriminatory ability with a c-index for corrected PFS/OS of 0.606 (95% CI, 0.578-0.636) and 0.623 (95% CI, 0.594-0.655), respectively. In the validation cohort, the model is well calibrated, with a c-index of 0.650 and 0.683 for PFS and OS, respectively. Conclusion: The AGAMENON-HER2 prognostic tool stratifies HER2-positive AGA patients receiving trastuzumab and chemotherapy according to their estimated survival endpoints.
RESUMO
Small cell lung cancer (SCLC) is characterized by morphologic, epigenetic and transcriptomic heterogeneity. Subtypes based upon predominant transcription factor expression have been defined that, in mouse models and cell lines, exhibit potential differential therapeutic vulnerabilities, with epigenetically distinct SCLC subtypes also described. The clinical relevance of these subtypes is unclear, due in part to challenges in obtaining tumor biopsies for reliable profiling. Here we describe a robust workflow for genome-wide DNA methylation profiling applied to both patient-derived models and to patients' circulating cell-free DNA (cfDNA). Tumor-specific methylation patterns were readily detected in cfDNA samples from patients with SCLC and were correlated with survival outcomes. cfDNA methylation also discriminated between the transcription factor SCLC subtypes, a precedent for a liquid biopsy cfDNA-methylation approach to molecularly subtype SCLC. Our data reveal the potential clinical utility of cfDNA methylation profiling as a universally applicable liquid biopsy approach for the sensitive detection, monitoring and molecular subtyping of patients with SCLC.
Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Epigenoma/genética , Metilação de DNA/genética , Neoplasias Pulmonares/diagnóstico , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Circulating tumour cell (CTC) number is an independent prognostic factor in patients with small cell lung cancer (SCLC) but there is no consensus on the CTC threshold for prognostic significance. We undertook a pooled analysis of individual patient data to clinically validate CTC enumeration and threshold for prognostication. METHODS: Four European cancer centres, experienced in CellSearch CTC enumeration for SCLC provided pseudo anonymised data for patients who had undergone pre-treatment CTC count. Data was collated, and Cox regression models, stratified by centre, explored the relationship between CTC count and survival. The added value of incorporating CTCs into clinico-pathological models was investigated using likelihood ratio tests. RESULTS: A total of 367 patient records were evaluated. A one-unit increase in log-transformed CTC counts corresponded to an estimated hazard ratio (HR) of 1.24 (95% CI: 1.19-1.29, P<0.0001) for progression free survival (PFS) and 1.23 (95% CI: 1.18-1.28, P<0.0001) for overall survival (OS). CTC count of ≥15 or ≥50 was significantly associated with an increased risk of progression (CTC ≥15: HR 3.20, 95% CI: 2.50-4.09, P<0.001; CTC ≥50: HR 2.56, 95% CI: 2.01-3.25, P<0.001) and an increased risk of death (CTC ≥15: HR 2.90, 95% CI: 2.28-3.70, P<0.001; CTC ≥50: HR 2.47, 95% CI: 1.95-3.13, P<0.001). There was no significant inter-centre heterogeneity observed. Addition of CTC count to clinico-pathological models as a continuous log-transformed variable, offers further prognostic value (both likelihood ratio P<0.001 for OS and PFS). CONCLUSIONS: Higher pre-treatment CTC counts are a negative independent prognostic factor in SCLC when considered as a continuous variable or dichotomised counts of ≥15 or ≥50. Incorporating CTC counts, as a continuous variable, improves clinic-pathological prognostic models.
RESUMO
INTRODUCTION: SCLC accounts for approximately 250,000 deaths worldwide each year. Acquisition of adequate tumor biopsy samples is challenging, and liquid biopsies present an alternative option for patient stratification and response monitoring. METHODS: We applied whole genome next-generation sequencing to circulating free DNA (cfDNA) from 39 patients with limited-stage (LS) SCLC and 30 patients with extensive-stage SCLC to establish genome-wide copy number aberrations and also performed targeted mutation analysis of 110 SCLC associated genes. Quantitative metrics were calculated for copy number aberrations, including percent genome amplified (PGA [the percentage of genomic regions amplified]), Z-score (a measure of standard deviation), and Moran's I (a measure of spatial autocorrelation). In addition CellSearch, an epitope-dependent enrichment platform, was used to enumerate circulating tumor cells (CTCs) from a parallel blood sample. RESULTS: Genome-wide and targeted cfDNA sequencing data identified tumor-related changes in 94% of patients with LS SCLC and 100% of patients with extensive-stage SCLC. Parallel analysis of CTCs based on at least 1 CTC/7.5 mL of blood increased tumor detection frequencies to 95% for LS SCLC. Both CTC counts and cfDNA readouts correlated with disease stage and overall survival. CONCLUSIONS: We demonstrate that a simple cfDNA genome-wide copy number approach provides an effective means of monitoring patients through treatment and show that targeted cfDNA sequencing identifies potential therapeutic targets in more than 50% of patients. We are now incorporating this approach into additional studies and trials of targeted therapies.
Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Carcinoma de Pequenas Células do Pulmão , Biomarcadores Tumorais , Ácidos Nucleicos Livres/genética , DNA , Humanos , Neoplasias Pulmonares/genética , Mutação , Carcinoma de Pequenas Células do Pulmão/genéticaRESUMO
Small cell lung cancer (SCLC) accounts for 15% of lung cancer diagnosed worldwide. It is aggressive and characterised by early metastatic spread with rapid development of chemo resistance such that less than 5% of patients diagnosed survive 5 years. Surgery is rarely performed and failure to identify new effective treatments has been attributed in a large part to lack of good quality tumour biopsies available for translational research. Liquid biopsies provide a minimally invasive alternative to traditional tumour biopsy. Circulating tumour cells (CTCs) are abundant in SCLC and can be enriched and isolated from a venous blood sample. In recent years progress has been made into the molecular characterisation of CTCs and their use to form tumour xenografts in mice for preclinical studies. This review will discuss the current status of the clinical utility of CTCs in patients with SCLC, highlighting their potential application to treatment decision making, drug development in clinical trials and preclinical testing.
RESUMO
SCLC accounts for 15% of lung cancer worldwide. Characterised by early dissemination and rapid development of chemo-resistant disease, less than 5% of patients survive 5 years. Despite 3 decades of clinical trials there has been no change to the standard platinum and etoposide regimen for first line treatment developed in the 1970's. The exceptionally high number of genomic aberrations observed in SCLC combined with the characteristic rapid cellular proliferation results in accumulation of DNA damage and genomic instability. To flourish in this precarious genomic context, SCLC cells are reliant on functional DNA damage repair pathways and cell cycle checkpoints. Current cytotoxic drugs and radiotherapy treatments for SCLC have long been known to act by induction of DNA damage and the response of cancer cells to such damage determines treatment efficacy. Recent years have witnessed improved understanding of strategies to exploit DNA damage and repair mechanisms in order to increase treatment efficacy. This review will summarise the rationale to target DNA damage response in SCLC, the progress made in evaluating novel DDR inhibitors and highlight various ongoing challenges for their clinical development in this disease.