Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Rev ; 72(1): 152-190, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831519

RESUMO

Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anticolesterolemiantes/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Doenças Cardiovasculares/sangue , Colesterol/sangue , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Lipoproteínas HDL/metabolismo , Terapia de Alvo Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
2.
Life Sci ; 300: 120571, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469913

RESUMO

Mitochondrial complex I (CI), the first multiprotein enzyme complex of the oxidative phosphorylation system, plays a crucial role in cellular energy production. CI deficiency is associated with a variety of clinical phenotypes, including Leigh syndrome. At the cellular level, an increased NAD(P)H concentration is one of the hallmarks in CI-deficiency. AIMS: Here, we aimed to attenuate increased NAD(P)H levels by stimulation of ATP-dependent cassette (ABC)A1 and ABCG1-mediated cellular cholesterol efflux with various PPARα and LXRα agonists. MAIN METHODS: Mitochondrial CI-deficient fibroblasts and chemically-induced CI-deficient HeLa cells were used to study the dose-dependent effects of various PPARα and LXRα agonists on cellular NAD(P)H levels and cholesterol efflux. KEY FINDINGS: In patient-derived mitochondrial CI-deficient fibroblasts, GW590735, astaxanthin, oleoylethanolamide, and GW3965 significantly reduced the enhanced NAD(P)H levels in CI-deficient fibroblasts. Similar effects were observed in chemically-induced CI-impaired HeLa cells, in which BMS-687453, Wy14643, GW7647, T0901317, DMHCA also demonstrated a beneficial effect. Surprisingly, no effect on ABCA1- and ABCG1-mediated cholesterol efflux in HeLa cells and fibroblasts was found after treatment with these compounds. The reduction in NAD(P)H levels by GW590735 could be partially reversed by inhibition of fatty acid synthase and ß-oxidation, which suggests that its beneficial effects are possibly mediated via stimulation of fatty acid metabolism rather than cholesterol efflux. SIGNIFICANCE: Collectively, PPARα and LXRα stimulation resulted in attenuated cellular NAD(P)H levels in CI-impaired HeLa cells and patient-derived fibroblasts and could eventually have a therapeutic potential in CI deficiency.


Assuntos
NAD , PPAR alfa , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Células HeLa , Humanos , Receptores X do Fígado/metabolismo , Doenças Mitocondriais , NAD/metabolismo , PPAR alfa/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166062, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385517

RESUMO

The majority of cellular energy is produced by the mitochondrial oxidative phosphorylation (OXPHOS) system. Failure of the first OXPHOS enzyme complex, NADH:ubiquinone oxidoreductase or complex I (CI), is associated with multiple signs and symptoms presenting at variable ages of onset. There is no approved drug treatment yet to slow or reverse the progression of CI-deficient disorders. Here, we present a comprehensive human metabolic network model of genetically characterized CI-deficient patient-derived fibroblasts. Model calculations predicted that increased cholesterol production, export, and utilization can counterbalance the surplus of reducing equivalents in patient-derived fibroblasts, as these pathways consume considerable amounts of NAD(P)H. We show that fibrates attenuated increased NAD(P)H levels and improved CI-deficient fibroblast growth by stimulating the production of cholesterol via enhancement of its cellular efflux. In CI-deficient (Ndufs4-/-) mice, fibrate treatment resulted in prolonged survival and improved motor function, which was accompanied by an increased cholesterol efflux from peritoneal macrophages. Our results shine a new light on the use of compensatory biological pathways in mitochondrial dysfunction, which may lead to novel therapeutic interventions for mitochondrial diseases for which currently no cure exists.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Colesterol/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Ácidos Fíbricos/uso terapêutico , Doenças Mitocondriais/metabolismo , Animais , Colesterol/genética , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , Atividade Motora/efeitos dos fármacos , NADP/metabolismo , Oxirredução/efeitos dos fármacos
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165727, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070771

RESUMO

Mitochondrial complex I (CI), the first multiprotein enzyme complex of the OXPHOS system, executes a major role in cellular ATP generation. Consequently, dysfunction of this complex has been linked to inherited metabolic disorders, including Leigh disease (LD), an often fatal disease in early life. Development of clinical effective treatments for LD remains challenging due to the complex pathophysiological nature. Treatment with the peroxisome proliferation-activated receptor (PPAR) agonist bezafibrate improved disease phenotype in several mitochondrial disease mouse models mediated via enhanced mitochondrial biogenesis and fatty acid ß-oxidation. However, the therapeutic potential of this mixed PPAR (α, δ/ß, γ) agonist is severely hampered by hepatotoxicity, which is possibly caused by activation of PPARγ. Here, we aimed to investigate the effects of the PPARα-specific fibrate clofibrate in mitochondrial CI-deficient (Ndufs4-/-) mice. Clofibrate increased lifespan and motor function of Ndufs4-/- mice, while only marginal hepatotoxic effects were observed. Due to the complex clinical and cellular phenotype of CI-deficiency, we also aimed to investigate the therapeutic potential of clofibrate combined with the redox modulator KH176. As described previously, single treatment with KH176 was beneficial, however, combining clofibrate with KH176 did not result in an additive effect on disease phenotype in Ndufs4-/- mice. Overall, both drugs have promising, but independent and nonadditive, properties for the pharmacological treatment of CI-deficiency-related mitochondrial diseases.


Assuntos
Cromanos/farmacologia , Clofibrato/farmacologia , Complexo I de Transporte de Elétrons/deficiência , Longevidade/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Bezafibrato/farmacologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Humanos , Doença de Leigh/tratamento farmacológico , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Atividade Motora/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/genética
5.
Microbiome ; 5(1): 63, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645307

RESUMO

BACKGROUND: Perturbation of commensal intestinal microbiota has been associated with several autoimmune diseases. Mice deficient in interleukin-1 receptor antagonist (Il1rn -/- mice) spontaneously develop autoimmune arthritis and are susceptible to other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis; however, the mechanisms of increased susceptibility to these autoimmune phenotypes are poorly understood. We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) in regulation of commensal intestinal microbiota, and assessed the involvement of microbiota subsets and innate and adaptive mucosal immune responses that underlie the development of spontaneous arthritis in Il1rn -/- mice. RESULTS: Using high-throughput 16S rRNA gene sequencing, we show that IL-1Ra critically maintains the diversity and regulates the composition of intestinal microbiota in mice. IL-1Ra deficiency reduced the intestinal microbial diversity and richness, and caused specific taxonomic alterations characterized by overrepresented Helicobacter and underrepresented Ruminococcus and Prevotella. Notably, the aberrant intestinal microbiota in IL1rn -/- mice specifically potentiated IL-17 production by intestinal lamina propria (LP) lymphocytes and skewed the LP T cell balance in favor of T helper 17 (Th17) cells, an effect transferable to WT mice by fecal microbiota. Importantly, LP Th17 cell expansion and the development of spontaneous autoimmune arthritis in IL1rn -/- mice were attenuated under germ-free condition. Selective antibiotic treatment revealed that tobramycin-induced alterations of commensal intestinal microbiota, i.e., reduced Helicobacter, Flexispira, Clostridium, and Dehalobacterium, suppressed arthritis in IL1rn -/- mice. The arthritis phenotype in IL1rn -/- mice was previously shown to depend on Toll-like receptor 4 (TLR4). Using the ablation of both IL-1Ra and TLR4, we here show that the aberrations in the IL1rn -/- microbiota are partly TLR4-dependent. We further identify a role for TLR4 activation in the intestinal lamina propria production of IL-17 and cytokines involved in Th17 differentiation preceding the onset of arthritis. CONCLUSIONS: These findings identify a critical role for IL1Ra in maintaining the natural diversity and composition of intestinal microbiota, and suggest a role for TLR4 in mucosal Th17 cell induction associated with the development of autoimmune disease in mice.


Assuntos
Artrite/imunologia , Microbioma Gastrointestinal , Doenças Hereditárias Autoinflamatórias/imunologia , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Interleucina-17/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Antibacterianos/administração & dosagem , Artrite/microbiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Variação Genética , Helicobacter/genética , Doenças Hereditárias Autoinflamatórias/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Mucosa/imunologia , Mucosa/microbiologia , Prevotella/genética , RNA Ribossômico 16S , Ruminococcus/genética , Células Th17/imunologia , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA