RESUMO
Bacterial vaginosis (BV), the most common vaginal infection worldwide, is characterized by the development of a polymicrobial biofilm on the vaginal epithelium. While Gardnerella spp. have been shown to have a prominent role in BV, little is known regarding how other species can influence BV development. Thus, we aimed to study the transcriptome of Gardnerella vaginalis, Fannyhessea vaginae, and Prevotella bivia, when growing in triple-species biofilms. Single and triple-species biofilms were formed in vitro, and RNA was extracted and sent for sequencing. cDNA libraries were prepared and sequenced. Quantitative PCR analysis (qPCR) was performed on the triple-species biofilms to evaluate the biofilm composition. The qPCR results revealed that the triple-species biofilms were mainly composed by G. vaginalis and P. bivia was the species with the lowest percentage. The RNA-sequencing analysis revealed a total of 432, 126, and 39 differentially expressed genes for G. vaginalis, F. vaginae, and P. bivia, respectively, when growing together. Gene ontology enrichment of G. vaginalis downregulated genes revealed several functions associated with metabolism, indicating a low metabolic activity of G. vaginalis when growing in polymicrobial biofilms. This work highlighted that the presence of 3 different BV-associated bacteria in the biofilm influenced each other's transcriptome and provided insight into the molecular mechanisms that enhanced the virulence potential of polymicrobial consortia. These findings will contribute to understand the development of incident BV and the interactions occurring within the biofilm.
Assuntos
Biofilmes , Gardnerella vaginalis , Prevotella , Transcriptoma , Biofilmes/crescimento & desenvolvimento , Gardnerella vaginalis/genética , Prevotella/genética , Prevotella/fisiologia , Feminino , Humanos , Vaginose Bacteriana/microbiologia , Vagina/microbiologiaRESUMO
BACKGROUND: Bacterial vaginosis (BV), the most common cause of vaginal discharge, is characterized by the presence of a polymicrobial biofilm on the vaginal epithelium, formed primarily by Gardnerella spp., but also other anaerobic species. Interactions between bacteria in multi-species biofilms are likely to contribute to increased virulence and to enhanced antimicrobial tolerance observed in vivo. However, functional studies addressing this question are lacking. OBJECTIVES: To gain insights into the role that interactions between BV-associated species in multi-species BV biofilms might have on antimicrobial tolerance, single- and triple-species biofilms formed by Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae and Peptostreptococcus anaerobius were characterized, before and after metronidazole or clindamycin treatment. METHODS: Total biofilm biomass, total cells and cfu counts prior to and after antibiotic treatment were first determined. In addition, bacterial populations in the triple-species biofilms were also quantified by quantitative PCR (qPCR) and peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH). RESULTS: Despite the effect observed in single-species biofilms, neither metronidazole nor clindamycin was effective in reducing triple-species biofilm biomass. Similar results were obtained when evaluating the number of total or culturable cells. Interestingly, despite differences between strain susceptibilities to antibiotics, the composition of the triple-species biofilms was not strongly affected by antibiotics. CONCLUSIONS: Taken together, these results strengthen the idea that, when co-incubated, bacteria can interact synergistically, leading to increased tolerance to antimicrobial therapy, which helps explain the observed clinically high BV recurrence rates.
Assuntos
Anti-Infecciosos , Vaginose Bacteriana , Actinobacteria , Antibacterianos/farmacologia , Bactérias , Biofilmes , Clindamicina/farmacologia , Feminino , Gardnerella vaginalis/genética , Humanos , Hibridização in Situ Fluorescente , Metronidazol/farmacologia , Vagina/microbiologia , Vaginose Bacteriana/microbiologiaRESUMO
Bacterial vaginosis (BV) is one of the most common bacterial vaginal infections worldwide. Despite its high prevalence, BV etiology is still unknown. Nevertheless, a hallmark of BV is the presence of a highly structured polymicrobial biofilm on the vaginal epithelium, formed primarily by Gardnerella spp. and other anaerobic species, of which co-colonization with Fannyhessea vaginae is considered an important diagnostic marker. We previously developed an in vitro biofilm model wherein Gardnerella was first allowed to establish an early biofilm that served as a scaffold for other species to adhere to. To better understand ecological interactions between BV-associated bacteria, we compared triple-species biofilms formed using two distinct models: a pre-conditioned (wherein Gardnerella vaginalis formed the early biofilm) model and a competitive (wherein all three bacteria were co-incubated together) model. Interestingly, synergistic growth interactions were more significant in the competitive model. Furthermore, the biofilm structure and species-specific distribution, as assessed by confocal laser scanning microscopy and using peptide nucleic acid fluorescence in situ hybridization method, revealed two very different triple-species morphotypes, suggesting that different interactions occur in the different models. Interestingly, independent of the model or triple-species consortium tested, we observed that G. vaginalis represented most of the biofilm bacterial composition, further highlighting the relevance of this taxon in BV.
Assuntos
Gardnerella vaginalis , Vaginose Bacteriana , Humanos , Feminino , Gardnerella vaginalis/genética , Hibridização in Situ Fluorescente , Vaginose Bacteriana/microbiologia , Biofilmes , Vagina/microbiologia , BactériasRESUMO
Quantitative PCR (qPCR) has become a widely used technique for bacterial quantification. The affordability, ease of experimental design, reproducibility, and robustness of qPCR experiments contribute to its success. The establishment of guidelines for minimum information for publication of qPCR experiments, now more than 10 years ago, aimed to mitigate the publication of contradictory data. Unfortunately, there are still a significant number of recent research articles that do not consider the main pitfalls of qPCR for quantification of biological samples, which undoubtedly leads to biased experimental conclusions. qPCR experiments have two main issues that need to be properly tackled: those related to the extraction and purification of genomic DNA and those related to the thermal amplification process. This mini-review provides an updated literature survey that critically analyzes the following key aspects of bacterial quantification by qPCR: (i) the normalization of qPCR results by using exogenous controls, (ii) the construction of adequate calibration curves, and (iii) the determination of qPCR reaction efficiency. It is primarily focused on original papers published last year, where qPCR was applied to quantify bacterial species in different types of biological samples, including multi-species biofilms, human fluids, and water and soil samples. KEY POINTS: ⢠qPCR is a widely used technique used for absolute bacterial quantification. ⢠Recently published papers lack proper qPCR methodologies. ⢠Not including proper qPCR controls significantly affect experimental conclusions.
Assuntos
DNA , Humanos , Reprodutibilidade dos TestesRESUMO
Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent respiratory pathogens in cystic fibrosis patients. Both organisms often cause chronic and recalcitrant infections, in large part due to their ability to form biofilms, being these mixed-species infections correlated with poor clinical outcomes. In this study, the hypothesis that S. aureus adopts phenotypes allowing its coexistence with P. aeruginosa during biofilm growth was put forward. We noticed that S. aureus undergoes a viable but non-cultivable (VBNC) state in the dominated P. aeruginosa dual-species consortia, whatsoever the strains used to form the biofilms. Moreover, an increased expression of genes associated with S. aureus virulence was detected suggesting that the phenotypic switching to VBNC state might account for S. aureus pathogenicity and, in turn, influence the clinical outcome of the mixed-species infection. Thus, P. aeruginosa seems to induce both phenotypic and transcriptomic changes in S. aureus, helping its survival and coexistence in the dual-species biofilms. Overall, our findings illustrate how interspecies interactions can modulate bacterial virulence in vitro, contributing to a better understanding of the behaviour of P. aeruginosa-S. aureus dual-species biofilms.
Assuntos
Pseudomonas aeruginosa , Infecções Estafilocócicas , Biofilmes , Humanos , Interações Microbianas , Staphylococcus aureusRESUMO
Staphylococcus epidermidis has long been known as a major bacterial coloniser of the human skin, yet it is also a prominent nosocomial pathogen. Its remarkable ability to assemble structured biofilms has been its major known pathogenic feature to date. Notwithstanding important discoveries that have been accomplished, several questions about S. epidermidis biofilm formation still remain to be elucidated. This study aimed to assess whether iron availability modulates S. epidermidis biofilm formation and, if so, to explore how such modulation occurs. Biofilms of three S. epidermidis strains were grown under iron-enriched/-deficient conditions and several physiologic and transcriptomic changes were assessed. Our data revealed that while physiologic iron levels do not compromise biofilm formation, iron excess or deficiency is detrimental for this process. Conversely, biofilm cells were not affected in the same way when grown planktonically. By studying biofilm cells in detail we found that their viability and cultivability were seriously compromised by iron deficiency. Also, a temporal analysis of biofilm formation revealed that iron excess/deficiency: i) impaired biomass accumulation from 6h onwards, and ii) induced changes in the biofilm structure, indicating that iron availability plays a pivotal role from an early biofilm development stage. The expression of several putative iron-related genes, namely encoding siderophore biosynthesis/transport-related proteins, was found to be modulated by iron availability, providing a biological validation of their function on S. epidermidis iron metabolism. This study therefore provides evidence that iron plays a pivotal role on S. epidermidis biofilm formation.
Assuntos
Biofilmes/crescimento & desenvolvimento , Ferro/metabolismo , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/metabolismo , Oligoelementos/metabolismo , Perfilação da Expressão Gênica , Fatores de TempoRESUMO
Poly-N-acetylglucosamine (PNAG) is a major component of the Staphylococcus epidermidis biofilm extracellular matrix. However, it is not yet clear how this polysaccharide impacts the host immune response and infection-associated pathology. Faster neutrophil recruitment and bacterial clearance were observed in mice challenged intraperitoneally with S. epidermidis biofilm cells of the PNAG-producing 9142 strain than in mice similarly challenged with the isogenic PNAG-defective M10 mutant. Moreover, intraperitoneal priming with 9142 cells exacerbated liver inflammatory pathology induced by a subsequent intravenous S. epidermidis challenge, compared to priming with M10 cells. The 9142-primed mice had elevated splenic CD4(+) T cells producing gamma interferon and interleukin-17A, indicating that PNAG promoted cell-mediated immunity. Curiously, despite having more marked liver tissue pathology, 9142-primed mice also had splenic T regulatory cells with greater suppressive activity than those of their M10-primed counterparts. By showing that PNAG production by S. epidermidis biofilm cells exacerbates host inflammatory pathology, these results together suggest that this polysaccharide contributes to the clinical features associated with biofilm-derived infections.
Assuntos
Acetilglucosamina/metabolismo , Epiderme/metabolismo , Imunidade Celular/fisiologia , Infecções Estafilocócicas/fisiopatologia , Staphylococcus epidermidis/fisiologia , Análise de Variância , Animais , Biofilmes , Linfócitos T CD4-Positivos/fisiologia , Citocinas/análise , Citometria de Fluxo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Baço/citologiaRESUMO
The proportion of dormant bacteria within Staphylococcus epidermidis biofilms may determine its inflammatory profile. Previously, we have shown that S. epidermidis biofilms with higher proportions of dormant bacteria have reduced activation of murine macrophages. RNA-sequencing was used to identify the major transcriptomic differences between S. epidermidis biofilms with different proportions of dormant bacteria. To accomplish this goal, we used an in vitro model where magnesium allowed modulation of the proportion of dormant bacteria within S. epidermidis biofilms. Significant differences were found in the expression of 147 genes. A detailed analysis of the results was performed based on direct and functional gene interactions. Biological processes among the differentially expressed genes were mainly related to oxidation-reduction processes and acetyl-CoA metabolic processes. Gene set enrichment revealed that the translation process is related to the proportion of dormant bacteria. Transcription of mRNAs involved in oxidation-reduction processes was associated with higher proportions of dormant bacteria within S. epidermidis biofilm. Moreover, the pH of the culture medium did not change after the addition of magnesium, and genes related to magnesium transport did not seem to impact entrance of bacterial cells into dormancy.
Assuntos
Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Staphylococcus epidermidis/fisiologia , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismoRESUMO
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Assuntos
Adenosina , Transtorno do Deficit de Atenção com Hiperatividade , Proteínas de Transporte de Nucleosídeos , Receptores Purinérgicos P1 , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Animais , Proteínas de Transporte de Nucleosídeos/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Dopamina/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transdução de Sinais/fisiologiaRESUMO
In nature, bacteria often survive in a stationary state with low metabolic activity. Phages use the metabolic machinery of the host cell to replicate, and, therefore, their efficacy against non-dividing cells is usually limited. Nevertheless, it was previously shown that the Staphylococcus epidermidis phage SEP1 has the remarkable capacity to actively replicate in stationary-phase cells, reducing their numbers. Here, we studied for the first time the transcriptomic profiles of both exponential and stationary cells infected with SEP1 phage using RNA-seq to gain a better understanding of this rare phenomenon. We showed that SEP1 successfully takes over the transcriptional apparatus of both exponential and stationary cells. Infection was, however, delayed in stationary cells, with genes within the gp142-gp154 module putatively implicated in host takeover. S. epidermidis responded to SEP1 infection by upregulating three genes involved in a DNA modification system, with this being observed already 5 min after infection in exponential cells and later in stationary cells. In stationary cells, a significant number of genes involved in translation and RNA metabolic and biosynthetic processes were upregulated after 15 and 30 min of SEP1 infection in comparison with the uninfected control, showing that SEP1 activates metabolic and biosynthetic pathways necessary to its successful replication.IMPORTANCEMost phage-host interaction studies are performed with exponentially growing cells. However, this cell state is not representative of what happens in natural environments. Additionally, most phages fail to replicate in stationary cells. The Staphylococcus epidermidis phage SEP1 is one of the few phages reported to date to be able to infect stationary cells. Here, we unveiled the interaction of SEP1 with its host in both exponential and stationary states of growth at the transcriptomic level. The findings of this study provide valuable insights for a better implementation of phage therapy since phages able to infect stationary cells could be more efficient in the treatment of recalcitrant infections.
Assuntos
Fagos de Staphylococcus , Staphylococcus epidermidis , Staphylococcus epidermidis/virologia , Staphylococcus epidermidis/metabolismo , Staphylococcus epidermidis/genética , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/metabolismo , Replicação Viral , Transcriptoma , Regulação Bacteriana da Expressão GênicaRESUMO
Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.
Assuntos
Proteínas de Bactérias , Biofilmes , Citocinas , Macrófagos , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/fisiologia , Biofilmes/crescimento & desenvolvimento , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Citocinas/metabolismo , Citocinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Deleção de Genes , Virulência , Viabilidade MicrobianaRESUMO
Nasal delivery has emerged as a non-invasive route to administer drugs for brain delivery. In particular, polyelectrolyte complexes-based nanocarriers have been demonstrated to be advantageous for nasal delivery of peptide drugs and vaccines. Pramlintide (Pram) is a peptide that emerges as a novel neuroprotective strategy to modify the pathogenesis of Alzheimer's disease (AD). In this study, we examined the effects of the intranasal administration of dextran-pramlintide polyelectrolyte complex-coated nanoemulsions (PEC-NEDexS/Pram) in an experimental model of AD induced by intracerebroventricular (i.c.v.) infusion of amyloid-beta (Aß1-42) peptide in mice. PEC-NEDexS/Pram displayed droplet size lower than 200 nm and a negatively charged surface. The locomotor activity of the animals was not affected by the i.c.v. Aß1-42 injection or Pram treatment. On the other hand, the intranasal administration of PEC-NEDexS/Pram at a dose of 100 µg/day for 14 consecutive days restored the impairment induced by Aß1-42 injection in the discriminative learning and the short-term spatial reference memory of mice. However, Pram treatment did not alter the Aß1-42-induced anhedonic behavior, oxidative stress parameters, or the pre-synaptic SNAP-25 and post-synaptic PSD-95 levels in the hippocampus and prefrontal cortex. These findings indicate cognitive-enhancing properties of intranasal Pram administration in an animal model of AD.
RESUMO
Fibromyalgia (FM) is a painful chronic condition that significantly impacts the quality of life, posing challenges for clinical management. Given the difficulty of understanding the pathophysiology and finding new therapeutics, this study explored the effects of a medicinal plant, E. brasiliensis, in an FM model induced by reserpine in Swiss mice. Animals were treated with saline 0.9% (vehicle), duloxetine 10 mg/kg (positive control), or hydroalcoholic extract of E. brasiliensis leaves 300 mg/kg (HEEb). Nociceptive parameters, as well as locomotion, motor coordination, strength, anxiety, and depressive-like behaviors, were evaluated for 10 days. After that, the brain and blood were collected for further analysis of cytokines (interleukin 1? and interleukin 6), brain-derived neurotrophic factor (BDNF), and the immunocontents of total and phosphorylated Tropomyosin receptor kinase B (TrkB). The results demonstrated that the acute and prolonged treatment with HEEb was able to reduce both mechanical and thermal nociception. It was also possible to observe an increase in the strength, without changing locomotion and motor coordination parameters. Interestingly, treatment with HEEb reduces anxious and depressive-like behaviors. Finally, we observed a reduction in inflammatory cytokines in the hippocampus of animals treated with HEEb, while an increase in BDNF was observed in the prefrontal cortex (PFC). However, no alterations related to total and phosphorylated TrkB receptor expression were found. Our study demonstrated the antinociceptive and emotional effects of HEEb in mice, possibly acting on neuroinflammatory and neurotrophic mechanisms. These data provide initial evidence about the E. brasiliensis potential for treating chronic pain.
Assuntos
Analgésicos , Anti-Inflamatórios , Fator Neurotrófico Derivado do Encéfalo , Modelos Animais de Doenças , Fibromialgia , Extratos Vegetais , Folhas de Planta , Reserpina , Animais , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Fibromialgia/tratamento farmacológico , Fibromialgia/induzido quimicamente , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Masculino , Receptor trkB/metabolismo , Emoções/efeitos dos fármacos , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacosRESUMO
Mild traumatic brain injury (TBI) can lead to various disorders, encompassing cognitive and psychiatric complications. While pre-clinical studies have long investigated behavioral alterations, the fluid percussion injury (FPI) model still lacks a comprehensive behavioral battery that includes psychiatric-like disorders. To address this gap, we conducted multiple behavioral tasks over two months in adult male Wistar rats, focusing on mild FPI. Statistical analyses revealed that both naive and sham animals exhibited an increase in sweet liquid consumption over time. In contrast, the TBI group did not show any temporal changes, although mild FPI did induce a statistically significant decrease in sucrose consumption compared to control groups during the chronic phase. Additionally, social interaction tasks indicated reduced contact time in TBI animals. The elevated plus maze task demonstrated an increase in open-arm exploration following fluid percussion. Nonetheless, no significant differences were observed in the acute and chronic phases for the forced swim and light-dark box tasks. Evaluation of three distinct memory tasks in the chronic phase revealed that mild FPI led to long-term memory deficits, as assessed by the object recognition task, while the surgical procedure itself resulted in short-term spatial memory deficits, as evaluated by the Y-maze task. Conversely, working memory remained unaffected in the water maze task. Collectively, these findings provide a nuanced characterization of behavioral deficits induced by mild FPI.
Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Ratos , Animais , Masculino , Lesões Encefálicas Traumáticas/complicações , Percussão/efeitos adversos , Ratos Wistar , Memória de Curto Prazo , Modelos Animais de Doenças , Aprendizagem em LabirintoRESUMO
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. The development of sepsis is associated with excessive nitric oxide (NO) production, which plays an important role in controlling vascular homeostasis. 7-nitroindazole (7-NI) is a selective inhibitor of neuronal nitric oxide synthase (NOS-1) with potential application for treating NO imbalance conditions. However, 7-NI exhibits a low aqueous solubility and a short plasma half-life. To circumvent these biopharmaceutical limitations, pegylated (NEPEG7NI) and non-pegylated nanoemulsions (NENPEG7NI) containing 7-NI were developed. This study evaluates the pharmacokinetic profiles and toxicological properties of 7-NI loaded into the nanoemulsions. After a single intravenous administration of the free drug and the nanoemulsions at a dose of 10 mg.kg-1 in Wistar rats, 7-NI was widely distributed in the organs. The pharmacokinetic parameters of Cmax, t1/2, and AUC0-t were significantly increased after administration of the NEPEG7NI, compared to both free 7-NI and NENPEG7NI (p < 0.05). No observable adverse effects were observed after administering the free 7-NI, NEPEG7NI, or NENPEG7NI in the animals after a single dose of up to 3.0 mg.kg-1. The results indicated that 7-NI-loaded nanoemulsions are safe, constituting a promising approach to treating sepsis.
Assuntos
Óxido Nítrico Sintase , Sepse , Ratos , Animais , Ratos Wistar , Óxido Nítrico Sintase/metabolismo , Distribuição Tecidual , Indazóis/toxicidade , Indazóis/farmacocinética , Polietilenoglicóis/toxicidade , Inibidores Enzimáticos/farmacologiaRESUMO
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells' increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
RESUMO
Quantitative PCR (qPCR) is one of the most used techniques to quantify gene expression in bacterial biofilms due to its easiness, sensitivity, and robustness. However, several practical aspects need to be considered to obtain accurate and reliable results. Here, we describe a detailed and optimized protocol to quantify mRNA transcripts from bacterial biofilms using qPCR, including pieces of advice to improve RNA quality, which ultimately increases the accuracy, consistency, and relevance of gene expression data.
Assuntos
Biofilmes , RNA , Reação em Cadeia da Polimerase , RNA Mensageiro , Expressão GênicaRESUMO
Staphylococcus epidermidis is a major nosocomial pathogen with a remarkable ability to adhere to the surfaces of indwelling medical devices and form biofilms. Unlike other nosocomial pathogens, the interaction of S. epidermidis with host factors has not been the focus of substantial research. This study aimed to assess the alterations in the antibiotic susceptibility and biofilm formation ability of S. epidermidis in the presence of host serum factors. S. epidermidis strain RP62A was cultured in a laboratory culture medium with or without human serum/plasma, and changes in antibiotic susceptibility, biofilm formation, and gene expression were evaluated. The data obtained revealed that exposure to host serum factors increased the susceptibility of S. epidermidis to glycopeptide antibiotics and was also detrimental to biofilm formation. Gene expression analysis revealed downregulation of both dltA and fmtC genes shortly after human serum/plasma exposure. The importance of transferrin-mediated iron sequestration as a host anti-biofilm strategy against S. epidermidis was also emphasized. We have demonstrated that serum factors play a pivotal role as part of the host's anti-infective strategy against S. epidermidis infections, highlighting the importance of incorporating such factors during in vitro studies with this pathogen.
RESUMO
The biofilm formation by foodborne pathogens is known to increase the problem related with surface disinfection procedure in the food processing environment and consequent transmission of these pathogens into the population. Messenger RNA has been increasingly used to understand the action and the consequences of disinfectants in the virulence on such biofilms. RNA quality is an important requirement for any RNA-based analysis since the quality can impair the mRNA quantification. Therefore, we evaluated five different RNA extraction kits using biofilms of the foodborne pathogens Listeria monocytogenes, Escherichia coli, and Salmonella enterica. The five kits yielded RNA with different quantities and qualities. While for E. coli the variability of RNA quality did not affect the quantification of mRNA, the same was not true for L. monocytogenes or S. enterica. Therefore, our results indicate that not all kits are suitable for RNA extraction from bacterial biofilms, and thus, the selection of RNA extraction kit is crucial to obtain accurate and meaningful mRNA quantification.
Assuntos
Escherichia coli/isolamento & purificação , Listeria monocytogenes/isolamento & purificação , Reação em Cadeia da Polimerase/instrumentação , RNA Bacteriano/isolamento & purificação , Kit de Reagentes para Diagnóstico/normas , Salmonella enterica/isolamento & purificação , Biofilmes , Escherichia coli/genética , Escherichia coli/fisiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Reação em Cadeia da Polimerase/métodos , RNA Bacteriano/genética , RNA Mensageiro/genética , Salmonella enterica/genética , Salmonella enterica/fisiologiaRESUMO
Bloodstream infections caused by Staphylococcus epidermidis are often misdiagnosed since no diagnostic marker found so far can unequivocally discriminate "true" infection from sample contamination. While attempts have been made to find genomic and/or phenotypic differences between invasive and commensal isolates, possible changes in the transcriptome of these isolates under in vivo-mimicking conditions have not been investigated. Herein, we characterized the transcriptome, by RNA sequencing, of three clinical and three commensal isolates after 2 h of exposure to whole human blood. Bioinformatics analysis was used to rank the genes with the highest potential to distinguish invasive from commensal isolates and among the ten genes identified as candidates, the gene SERP2441 showed the highest potential. A collection of 56 clinical and commensal isolates was then used to validate, by quantitative PCR, the discriminative power of the selected genes. A significant variation was observed among isolates, and the discriminative power of the selected genes was lost, undermining their potential use as markers. Nevertheless, future studies should include an RNA sequencing characterization of a larger collection of isolates, as well as a wider range of conditions to increase the chances of finding further candidate markers for the diagnosis of bloodstream infections caused by S. epidermidis.