Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 19(8): e11686, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37325891

RESUMO

The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.


Assuntos
Ecossistema , Saúde Única , Humanos , Genômica , Biodiversidade , Genoma
2.
BMC Genomics ; 22(1): 330, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957869

RESUMO

BACKGROUND: Long-read sequencing in metagenomics facilitates the assembly of complete genomes out of complex microbial communities. These genomes include essential biologic information such as the ribosomal genes or the mobile genetic elements, which are usually missed with short-reads. We applied long-read metagenomics with Nanopore sequencing to retrieve high-quality metagenome-assembled genomes (HQ MAGs) from a dog fecal sample. RESULTS: We used nanopore long-read metagenomics and frameshift aware correction on a canine fecal sample and retrieved eight single-contig HQ MAGs, which were > 90% complete with < 5% contamination, and contained most ribosomal genes and tRNAs. At the technical level, we demonstrated that a high-molecular-weight DNA extraction improved the metagenomics assembly contiguity, the recovery of the rRNA operons, and the retrieval of longer and circular contigs that are potential HQ MAGs. These HQ MAGs corresponded to Succinivibrio, Sutterella, Prevotellamassilia, Phascolarctobacterium, Catenibacterium, Blautia, and Enterococcus genera. Linking our results to previous gastrointestinal microbiome reports (metagenome or 16S rRNA-based), we found that some bacterial species on the gastrointestinal tract seem to be more canid-specific -Succinivibrio, Prevotellamassilia, Phascolarctobacterium, Blautia_A sp900541345-, whereas others are more broadly distributed among animal and human microbiomes -Sutterella, Catenibacterium, Enterococcus, and Blautia sp003287895. Sutterella HQ MAG is potentially the first reported genome assembly for Sutterella stercoricanis, as assigned by 16S rRNA gene similarity. Moreover, we show that long reads are essential to detect mobilome functions, usually missed in short-read MAGs. CONCLUSIONS: We recovered eight single-contig HQ MAGs from canine feces of a healthy dog with nanopore long-reads. We also retrieved relevant biological insights from these specific bacterial species previously missed in public databases, such as complete ribosomal operons and mobilome functions. The high-molecular-weight DNA extraction improved the assembly's contiguity, whereas the high-accuracy basecalling, the raw read error correction, the assembly polishing, and the frameshift correction reduced the insertion and deletion errors. Both experimental and analytical steps ensured the retrieval of complete bacterial genomes.


Assuntos
Metagenoma , Metagenômica , Animais , Burkholderiales , Cães , Fezes , Genoma Bacteriano , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
J Antimicrob Chemother ; 76(2): 345-354, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33200193

RESUMO

OBJECTIVES: To characterize the clonal spread of carbapenem-resistant Klebsiella pneumoniae and Escherichia coli isolates between different healthcare institutions in Catalonia, Spain. METHODS: Antimicrobial susceptibility was tested by disc diffusion. MICs were determined by gradient diffusion or broth microdilution. Carbapenemase production was confirmed by lateral flow. PCR and Sanger sequencing were used to identify the allelic variants of resistance genes. Clonality studies were performed by PFGE and MLST. Plasmid typing, conjugation assays, S1-PFGE plus Southern blotting and MinION Oxford Nanopore sequencing were used to characterize resistance plasmids. RESULTS: Twenty-nine carbapenem-resistant isolates recovered from three healthcare institutions between January and November 2016 were included: 14 K. pneumoniae isolates from a tertiary hospital in the south of Catalonia (hospital A); 2 K. pneumoniae isolates from a nearby healthcare centre; and 12 K. pneumoniae isolates and 1 E. coli isolate from a tertiary hospital in Barcelona (hospital B). The majority of isolates were resistant to all antimicrobial agents, except colistin, and all were NDM producers. PFGE identified a major K. pneumoniae clone (n = 27) belonging to ST147 and co-producing NDM-1 and CTX-M-15, with a few isolates also harbouring blaOXA-48. Two sporadic isolates of K. pneumoniae ST307 and E. coli ST167 producing NDM-7 were also identified. blaNDM-1 was carried in two related IncR plasmid populations and blaNDM-7 in a conjugative 50 kb IncX3 plasmid. CONCLUSIONS: We report the inter-hospital dissemination of XDR high-risk clones of K. pneumoniae and E. coli associated with the carriage of small, transferable plasmids harbouring blaNDM genes.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Células Clonais , Infecção Hospitalar/microbiologia , Escherichia coli/genética , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Espanha/epidemiologia , beta-Lactamases/genética
4.
Vet Dermatol ; 32(2): 158-e37, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33399257

RESUMO

BACKGROUND: Canine otitis externa (OE) is a common disease characterised by inflammation of the epithelial tissue of the external ear canal. Secondary infections are frequent, and Malassezia pachydermatis and Staphylococcus pseudintermedius are routinely isolated and treated with antifungal and antibiotic compounds. HYPOTHESIS/OBJECTIVES: To analyse the otitis ear microbiome before and after a treatment with prednisolone plus pomegranate or antimicrobial drugs ANIMALS: 15 dogs with nonpurulent OE. METHODS AND MATERIALS: A 30 day, double-blinded, multicentre, randomized and controlled parallel-group (1:1) trial was conducted in 15 dogs with nonpurulent OE, following two different topical treatments (prednisolone plus pomegranate versus prednisolone plus antibiotic and antifungal drugs). On days (D)0, D15 and D30, serum and skin otic samples were collected, and clinical examination and microbiome analysis (bacteria and fungi) were performed. Results were compared with validated otitis clinical scores to assess the effectiveness of both treatments. RESULTS: Nine bacterial and four fungal families were detected during the three time-points tested. An increase in fungal diversity (Shannon index) and composition was the most significant change observed after both treatments. At treatment D15 and D30, the reduction in clinical signs was statistically significant in both treatment groups (P ≤ 0.05). Prednisolone plus pomegranate cleanser treatment was able to control the clinical signs of otitis as well as the bacterial and fungal overgrowth. CONCLUSIONS AND CLINICAL IMPORTANCE: Mild otitis cases associated with microbial overgrowth may be managed with topical antiseptic and anti-inflammatory agents without the need for antibiotic and/or antifungal compounds.


Assuntos
Doenças do Cão , Microbiota , Otite Externa , Punica granatum , Animais , Anti-Inflamatórios/uso terapêutico , Doenças do Cão/tratamento farmacológico , Cães , Malassezia , Otite Externa/tratamento farmacológico , Otite Externa/veterinária , Staphylococcus
5.
Vet Dermatol ; 32(6): 654-663, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34796561

RESUMO

BACKGROUND: Staphylococcus pseudintermedius is the main aetiological agent of canine pyoderma. Whole genome sequencing is the most comprehensive way of obtaining relevant genomic information about micro-organisms. HYPOTHESIS/OBJECTIVES: Oxford Nanopore technology enables quality sequencing and de novo assembly of the whole genome of S. pseudintermedius. Whole genome analysis of S. pseudintermedius may help to better understand the pathogenesis of canine pyodermas. METHODS AND MATERIALS: Twenty-two strains of S. pseudintermedius isolated from the skin of five healthy dogs and 33 strains isolated from skin of 33 dogs with pyoderma were analysed. DNA was extracted and sequenced using Oxford Nanopore MinION, a new technology that delivers longer reads in a hand-held device. The pangenome was analysed and visualised with Anvi'o 6.1. RESULTS: Nanopore technology allowed the sequencing and de novo assembly of the genomes of 55 S. pseudintermedius strains isolated from healthy dogs and from dogs with pyoderma. The average genome size of S. pseudintermedius was 2.62 Mbp, with 48% being core genome. Pyoderma isolates contained a higher number of antimicrobial resistance genes, yet the total number of virulence factors genes did not change between isolates from healthy dogs and from dogs with pyoderma. Genomes of meticillin-resistant S. pseudintermedius (MRSP) strains were larger than those of meticillin-susceptible (MSSP) strains (2.80 Mbp versus 2.59 Mbp), as a consequence of a greater presence of antimicrobial resistance genes, phages and prophages. CONCLUSIONS AND CLINICAL IMPORTANCE: This technique allows much more precise and easier characterisation of canine S. pseudintermedius populations and may lead to a better understanding of the pathogenesis of canine pyodermas.


Assuntos
Doenças do Cão , Pioderma , Animais , Cães , Pioderma/veterinária , Staphylococcus/genética , Sequenciamento Completo do Genoma/veterinária
6.
J Dairy Sci ; 103(3): 2693-2700, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980229

RESUMO

The identification of milk microbial communities in ruminants is relevant for understanding the association between milk microbiota and health status. The most common approach for studying the microbiota is amplifying and sequencing specific hypervariable regions of the 16S rRNA gene using massive sequencing techniques. However, the taxonomic resolution is limited to family and, in some cases, genus level. We aimed to improve taxonomic classification of the water buffalo milk microbiota by amplifying and sequencing the full-length 16S rRNA gene (1,500 bp) using Nanopore sequencing (single-molecule sequencing). When comparing with short-read results, we improved the taxonomic classification, reaching species level. We identified the main microbial agents of subclinical mastitis at the species level that were in accordance with the microbiological culture results. These results confirm the potential of single-molecule sequencing for in-depth analysis of microbial populations in dairy animals.


Assuntos
Búfalos/microbiologia , Mastite/veterinária , Microbiota/genética , Leite/microbiologia , Sequenciamento por Nanoporos/veterinária , Animais , Feminino , Mastite/microbiologia , RNA Ribossômico 16S/genética
7.
J Dairy Sci ; 102(8): 7476-7482, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31178197

RESUMO

The concept that ruminant mammary gland quarters are anatomically and physiologically unrelated has been recently challenged by immunological evidence. How this interdependence reflects on individual quarter milk microbiota is unknown. The aim of the present study was to cover this gap by investigating the interdependence of quarters among the same mammary gland at the milk microbiota level using next-generation sequencing of the V4-16S rRNA gene. A total of 52 samples were included in this study and classified as healthy or affected by subclinical mastitis. Extraction of DNA, amplification of the V4-16S rRNA gene, and sequencing using Ion Torrent Personal Genome Machine (Thermo Fisher Scientific, Waltham, MA) were carried out. We found that the intra-individual variability was lower than the inter-individual one. The present findings further support at milk microbiota level the hypothesis of the interdependence of quarters, as previously demonstrated following immunological studies, suggesting that individual factors (e.g., immunity, genetics) may have a role in modulating milk microbiota.


Assuntos
Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Microbiota , Animais , Búfalos/genética , Bovinos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Glândulas Mamárias Animais/imunologia , Mastite Bovina/imunologia , Leite , RNA Ribossômico 16S
8.
Parasitol Res ; 117(7): 2139-2148, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728826

RESUMO

Myobia sp. and Demodex sp. are two skin mites that infest mice, particularly immunodeficient or transgenic lab mice. In the present study, wild house mice from five localities from the Barcelona Roberstonian system were analysed in order to detect skin mites and compare their prevalence between standard (2n = 40) and Robertsonian mice (2n > 40). We found and identified skin mites through real-time qPCR by comparing sequences from the mitochondrial 16S rRNA and the nuclear 18S rRNA genes since no sequences are available so far using the mitochondrial gene. Fourteen positive samples were identified as Myobia musculi except for a deletion of 296 bp out to 465 bp sequenced, and one sample was identified as Demodex canis. Sampling one body site, the mite prevalence in standard and Robertsonian mice was 0 and 26%, respectively. The malfunction of the immune system elicits an overgrowth of skin mites and consequently leads to diseases such as canine demodicosis in dogs or rosacea in humans. In immunosuppressed mice, the probability of developing demodicosis is higher than in healthy mice. Since six murine toll-like receptors (TLRs) are located in four chromosomes affected by Robertsonian fusions, we cannot dismiss that differences in mite prevalence could be the consequence of the interruption of TLR function. Although ecological and/or morphological factors cannot be disregarded to explain differences in mite prevalence, the detection of translocation breakpoints in TLR genes or the analysis of TLR gene expression are needed to elucidate how Robertsonian fusions affect the immune system in mice.


Assuntos
Acaridae/classificação , Acaridae/genética , Cabelo/parasitologia , Infestações por Ácaros/epidemiologia , Pele/parasitologia , Animais , Feminino , Masculino , Camundongos , Infestações por Ácaros/veterinária , Prevalência , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Espanha/epidemiologia , Receptores Toll-Like/genética
9.
Small ; 12(2): 205-13, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26578391

RESUMO

A novel methodology for the isothermal amplification of Leishmania DNA using labeled primers combined with the advantages of magnetic purification/preconcentration and the use of gold nanoparticle (AuNP) tags for the sensitive electrochemical detection of such amplified DNA is developed. Primers labeled with AuNPs and magnetic beads (MBs) are used for the first time for the isothermal amplification reaction, being the amplified product ready for the electrochemical detection. The electrocatalytic activity of the AuNP tags toward the hydrogen evolution reaction allows the rapid quantification of the DNA on screen-printed carbon electrodes. Amplified products from the blood of dogs with Leishmania (positive samples) are discriminated from those of healthy dogs (blank samples). Quantitative studies demonstrate that the optimized method allows us to detect less than one parasite per microliter of blood (8 × 10(-3) parasites in the isothermal amplification reaction). This pioneering approach is much more sensitive than traditional methods based on real-time polymerase chain reaction (PCR), and is also more rapid, cheap, and user-friendly.


Assuntos
Primers do DNA/metabolismo , DNA/análise , Eletroquímica/métodos , Ouro/química , Leishmania/genética , Magnetismo , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Bioensaio , DNA/genética , Eletroforese em Gel de Ágar , Microesferas , Parasitos/genética , Coloração e Rotulagem
10.
Vet Dermatol ; 26(4): 239-e53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26178604

RESUMO

BACKGROUND: Demodex cati and Demodex gatoi are considered the two Demodex species of cats. However, several reports have identified Demodex mites morphologically different from these two species. The differentiation of Demodex mites is usually based on morphology, but within the same species different morphologies can occur. DNA amplification/sequencing has been used effectively to identify and differentiate Demodex mites in humans, dogs and cats. HYPOTHESIS/OBJECTIVES: The aim was to develop a PCR technique to identify feline Demodex mites and use this technique to investigate the frequency of Demodex in cats. METHODS: Demodex cati, D. gatoi and Demodex mites classified morphologically as the third unnamed feline species were obtained. Hair samples were taken from 74 cats. DNA was extracted; a 330 bp fragment of the 16S rDNA was amplified and sequenced. RESULTS: The sequences of D. cati and D. gatoi shared >98% identity with those published on GenBank. The sequence of the third unnamed species showed 98% identity with a recently published feline Demodex sequence and only 75.2 and 70.9% identity with D. gatoi and D. cati sequences, respectively. Demodex DNA was detected in 19 of 74 cats tested; 11 DNA sequences corresponded to Demodex canis, five to Demodex folliculorum, three to D. cati and two to Demodex brevis. CONCLUSIONS AND CLINICAL IMPORTANCE: Three Demodex species can be found in cats, because the third unnamed Demodex species is likely to be a distinct species. Apart from D. cati and D. gatoi, DNA from D. canis, D. folliculorum and D. brevis was found on feline skin.


Assuntos
Doenças do Gato/parasitologia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Trombiculidae/genética , Animais , Sequência de Bases , Gatos/parasitologia , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência/veterinária
11.
Vet Dermatol ; 24(1): 168-72.e37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23331694

RESUMO

BACKGROUND: It is unproven that all dogs harbour Demodex mites in their skin. In fact, several microscopic studies have failed to demonstrate mites in healthy dogs. HYPOTHESIS/OBJECTIVES: Demodex canis is a normal inhabitant of the skin of most, if not all, dogs. This hypothesis was tested using a sensitive real-time PCR to detect Demodex DNA in the skin of dogs. ANIMALS: One hundred dogs living in a humane society shelter, 20 privately owned and healthy dogs and eight dogs receiving immunosuppressive or antineoplastic therapy. METHODS: Hair samples (250-300 hairs with their hair bulbs) were taken from five or 20 skin locations. A real-time PCR that amplifies a 166 bp sequence of the D. canis chitin synthase gene was used. RESULTS: The percentage of positive dogs increased with the number of sampling points. When a large canine population was sampled at five cutaneous locations, 18% of dogs were positive for Demodex DNA. When 20 skin locations were sampled, all dogs tested positive for mite DNA. Our study indicates that Demodex colonization of the skin is present in all dogs, independent of age, sex, breed or coat. Nevertheless, the population of mites in a healthy dog appears to be small. Demodex DNA was amplified from all 20 cutaneous points investigated, without statistically significant differences. CONCLUSIONS AND CLINICAL IMPORTANCE: Using a real-time PCR technique, Demodex mites, albeit in very low numbers, were found to be normal inhabitants of haired areas of the skin of healthy dogs.


Assuntos
Doenças do Cão/parasitologia , Infestações por Ácaros/veterinária , Ácaros/classificação , Animais , Cães , Feminino , Hospedeiro Imunocomprometido , Masculino , Infestações por Ácaros/parasitologia
12.
Microbiol Spectr ; : e0339322, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786649

RESUMO

Staphylococcus pseudintermedius is a commensal bacterium of the canine skin but is also a key opportunistic pathogen that is responsible for most cases of pyoderma in dogs. The current paradigm indicates that infection arises when predisposing factors alter the healthy skin barrier. Despite their importance, the characteristics of the S. pseudintermedius populations colonizing the skin of healthy dogs are yet largely unknown. Here, we retrieved 67 complete circular genomes and 19 associated plasmids from S. pseudintermedius isolated from the skin of 9 healthy dogs via long-reads Nanopore sequencing. Within the S. pseudintermedius populations isolated from healthy skin, multilocus sequence typing (MLST) detected 10 different STs, distributed mainly by the host. 39% of the 18 representative genomes isolated herein were methicillin-resistant S. pseudintermedius (MRSP), and they showed, on average, a higher number of antibiotic resistance genes and prophages than did the methicillin-sensitive (MSSP). In summary, our results revealed that the S. pseudintermedius populations inhabiting the skin of healthy dogs are relatively diverse and heterogeneous in terms of MLST and methicillin resistance. In this study, all of the 67 commensal S. pseudintermedius populations that were isolated from healthy dogs contained antibiotic resistance genes, indicating the extent and severity of the problem of antimicrobial resistance in staphylococci with zoonotic potential. IMPORTANCE Staphylococcus pseudintermedius is a commensal canine bacterium that can become an opportunistic pathogen and is responsible for most cases of canine pyoderma. It can also cause occasional zoonotic infections. Infections caused by antibiotic-resistant Staphylococcus are a global concern. Skin commensal Staphylococcus pseudintermedius is understudied. To provide insight into the commensal strains circulating in healthy dogs, we performed whole-genome sequencing of 67 S. pseudintermedius isolates from different skin sites in 9 healthy dogs. Through the bioinformatic analysis of these genomes, we identified a genomic diversity that is more complete than those afforded by traditional molecular typing strategies. We identified 7 new STs. All of the isolates harbored genes associated with antibiotic resistance, and 39% of the representative genomes were methicillin-resistant. Our data provide critical insights for future skin infection control and antibiotic surveillance within veterinary medicine.

13.
Vet Dermatol ; 23(6): 509-e101, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23140317

RESUMO

BACKGROUND: The historical classification of Demodex mites has been based on their hosts and morphological features. Genome sequencing has proved to be a very effective taxonomic tool in phylogenetic studies and has been applied in the classification of Demodex. Mitochondrial 16S rDNA has been demonstrated to be an especially useful marker to establish phylogenetic relationships. HYPOTHESIS/OBJECTIVES: To amplify and sequence a segment of the mitochondrial 16S rDNA from Demodex canis and Demodex injai, as well as from the short-bodied mite called, unofficially, D. cornei and to determine their genetic proximity. METHODS: Demodex mites were examined microscopically and classified as Demodex folliculorum (one sample), D. canis (four samples), D. injai (two samples) or the short-bodied species D. cornei (three samples). DNA was extracted, and a 338 bp fragment of the 16S rDNA was amplified and sequenced. RESULTS: The sequences of the four D. canis mites were identical and shared 99.6 and 97.3% identity with two D. canis sequences available at GenBank. The sequences of the D. cornei isolates were identical and showed 97.8, 98.2 and 99.6% identity with the D. canis isolates. The sequences of the two D. injai isolates were also identical and showed 76.6% identity with the D. canis sequence. CONCLUSION: Demodex canis and D. injai are two different species, with a genetic distance of 23.3%. It would seem that the short-bodied Demodex mite D. cornei is a morphological variant of D. canis.


Assuntos
DNA Mitocondrial/genética , Infestações por Ácaros/veterinária , Ácaros/genética , Filogenia , RNA Ribossômico 16S/genética , Animais , Sequência de Bases , Doenças do Cão/parasitologia , Cães , Feminino , Variação Genética , Masculino , Infestações por Ácaros/parasitologia , RNA/genética , RNA Mitocondrial , Especificidade da Espécie
14.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298370

RESUMO

The human gut microbiome has been extensively studied, yet the canine gut microbiome is still largely unknown. The availability of high-quality genomes is essential in the fields of veterinary medicine and nutrition to unravel the biological role of key microbial members in the canine gut environment. Our aim was to evaluate nanopore long-read metagenomics and Hi-C (high-throughput chromosome conformation capture) proximity ligation to provide high-quality metagenome-assembled genomes (HQ MAGs) of the canine gut environment. By combining nanopore long-read metagenomics and Hi-C proximity ligation, we retrieved 27 HQ MAGs and 7 medium-quality MAGs of a faecal sample of a healthy dog. Canine MAGs (CanMAGs) improved genome contiguity of representatives from the animal and human MAG catalogues - short-read MAGs from public datasets - for the species they represented: they were more contiguous with complete ribosomal operons and at least 18 canonical tRNAs. Both canine-specific bacterial species and gut generalists inhabit the dog's gastrointestinal environment. Most of them belonged to Firmicutes, followed by Bacteroidota and Proteobacteria. We also assembled one Actinobacteriota and one Fusobacteriota MAG. CanMAGs harboured antimicrobial-resistance genes (ARGs) and prophages and were linked to plasmids. ARGs conferring resistance to tetracycline were most predominant within CanMAGs, followed by lincosamide and macrolide ones. At the functional level, carbohydrate transport and metabolism was the most variable within the CanMAGs, and mobilome function was abundant in some MAGs. Specifically, we assigned the mobilome functions and the associated mobile genetic elements to the bacterial host. The CanMAGs harboured 50 bacteriophages, providing novel bacterial-host information for eight viral clusters, and Hi-C proximity ligation data linked the six potential plasmids to their bacterial host. Long-read metagenomics and Hi-C proximity ligation are likely to become a comprehensive approach to HQ MAG discovery and assignment of extra-chromosomal elements to their bacterial host. This will provide essential information for studying the canine gut microbiome in veterinary medicine and animal nutrition.


Assuntos
Metagenoma , Microbiota , Animais , Bactérias/genética , Cães , Metagenômica , Microbiota/genética , Plasmídeos/genética , Prófagos/genética
15.
Microbiol Resour Announc ; 11(3): e0003922, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35234497

RESUMO

We have de novo assembled 67 Staphylococcus pseudintermedius genomes, with median values of 2.6 Mbp size and 99.43% completeness, 2,386 coding sequences, 19 complete rRNAs, 59 tRNAs, and 4 noncoding RNAs. We released 51 single-contig complete genomes and 16 genomes with a circular main contig using Nanopore sequencing.

16.
Antibiotics (Basel) ; 11(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421269

RESUMO

Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology.

17.
Microorganisms ; 10(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422326

RESUMO

The emergence of drug-resistant strains of the parasite Leishmania infantum infecting dogs and humans represents an increasing threat. L. infantum genomes are complex and unstable with extensive structural variations, ranging from aneuploidies to multiple copy number variations (CNVs). These CNVs have recently been validated as biomarkers of Leishmania concerning virulence, tissue tropism, and drug resistance. As a proof-of-concept to develop a novel diagnosis platform (LeishGenApp), four L. infantum samples from humans and dogs were nanopore sequenced. Samples were epidemiologically typed within the Mediterranean L. infantum group, identifying members of the JCP5 and non-JCP5 subgroups, using the conserved region (CR) of the maxicircle kinetoplast. Aneuploidies were frequent and heterogenous between samples, yet only chromosome 31 tetrasomy was common between all the samples. A high frequency of aneuploidies was observed for samples with long passage history (MHOM/TN/80/IPT-1), whereas fewer were detected for samples maintained in vivo (MCRI/ES/2006/CATB033). Twenty-two genes were studied to generate a genetic pharmacoresistance profile against miltefosine, allopurinol, trivalent antimonials, amphotericin, and paromomycin. MHOM/TN/80/IPT-1 and MCRI/ES/2006/CATB033 displayed a genetic profile with potential resistance against miltefosine and allopurinol. Meanwhile, MHOM/ES/2016/CATB101 and LCAN/ES/2020/CATB102 were identified as potentially resistant against paromomycin. All four samples displayed a genetic profile for resistance against trivalent antimonials. Overall, this proof-of-concept revealed the potential of nanopore sequencing and LeishGenApp for the determination of epidemiological, drug resistance, and pathogenicity biomarkers in L. infantum.

18.
BMC Genomics ; 12: 339, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21722374

RESUMO

BACKGROUND: Modern dog breeds display traits that are either breed-specific or shared by a few breeds as a result of genetic bottlenecks during the breed creation process and artificial selection for breed standards. Selective sweeps in the genome result from strong selection and can be detected as a reduction or elimination of polymorphism in a given region of the genome. RESULTS: Extended regions of homozygosity, indicative of selective sweeps, were identified in a genome-wide scan dataset of 25 Boxers from the United Kingdom genotyped at ~20,000 single-nucleotide polymorphisms (SNPs). These regions were further examined in a second dataset of Boxers collected from a different geographical location and genotyped using higher density SNP arrays (~170,000 SNPs). A selective sweep previously associated with canine brachycephaly was detected on chromosome 1. A novel selective sweep of over 8 Mb was observed on chromosome 26 in Boxer and for a shorter region in English and French bulldogs. It was absent in 171 samples from eight other dog breeds and 7 Iberian wolf samples. A region of extended increased heterozygosity on chromosome 9 overlapped with a previously reported copy number variant (CNV) which was polymorphic in multiple dog breeds. CONCLUSION: A selective sweep of more than 8 Mb on chromosome 26 was identified in the Boxer genome. This sweep is likely caused by strong artificial selection for a trait of interest and could have inadvertently led to undesired health implications for this breed. Furthermore, we provide supporting evidence for two previously described regions: a selective sweep on chromosome 1 associated with canine brachycephaly and a CNV on chromosome 9 polymorphic in multiple dog breeds.


Assuntos
Cromossomos/genética , Cães/genética , Genoma , Seleção Genética , Animais , Cruzamento , Genótipo , Heterozigoto , Polimorfismo de Nucleotídeo Único , Lobos/genética
19.
Parasitol Res ; 108(2): 305-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20865428

RESUMO

The present study reports the development of a real-time polymerase chain reaction (PCR) to detect Demodex canis DNA on different tissue samples. The technique amplifies a 166 bp of D. canis chitin synthase gene (AB 080667) and it has been successfully tested on hairs extracted with their roots and on formalin-fixed paraffin embedded skin biopsies. The real-time PCR amplified on the hairs of all 14 dogs with a firm diagnosis of demodicosis and consistently failed to amplify on negative controls. Eleven of 12 skin biopsies with a morphologic diagnosis of canine demodicosis were also positive. Sampling hairs on two skin points (lateral face and interdigital skin), D. canis DNA was detected on nine of 51 healthy dogs (17.6%) a much higher percentage than previously reported with microscopic studies. Furthermore, it is foreseen that if the number of samples were increased, the percentage of positive dogs would probably also grow. Moreover, in four of the six dogs with demodicosis, the samples taken from non-lesioned skin were positive. This finding, if confirmed in further studies, suggests that demodicosis is a generalized phenomenon in canine skin, due to proliferation of local mite populations, even though macroscopic lesions only appear in certain areas. The real-time PCR technique to detect D. canis DNA described in this work is a useful tool to advance our understanding of canine demodicosis.


Assuntos
DNA de Protozoário/análise , Doenças do Cão/parasitologia , Cabelo/parasitologia , Infestações por Ácaros/veterinária , Ácaros/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Pele/parasitologia , Animais , Biópsia , DNA de Protozoário/genética , Doenças do Cão/diagnóstico , Cães , Infestações por Ácaros/diagnóstico , Valor Preditivo dos Testes
20.
Biol Methods Protoc ; 6(1): bpaa026, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33506108

RESUMO

The availability of long-read technologies, like Oxford Nanopore Technologies, provides the opportunity to sequence longer fragments of the fungal ribosomal operon, up to 6 Kb (18S-ITS1-5.8S-ITS2-28S) and to improve the taxonomy assignment of the communities up to species level and in real-time. We assess the applicability for taxonomic assignment of amplicons targeting a 3.5 Kb region (V3 18S-ITS1-5.8S-ITS2-28S D2) and a 6 Kb region (V1 18S-ITS1-5.8S-ITS2-28S D12) with the What's in my pot (WIMP) classifier. We used the ZymoBIOMICSTM mock community and different microbiological fungal cultures as positive controls. Long amplicon sequencing correctly identified Saccharomyces cerevisiae and Cryptococcus neoformans from the mock community and Malassezia pachydermatis, Microsporum canis and Aspergillus fumigatus from the microbiological cultures. Besides, we identified Rhodotorula graminis in a culture mislabelled as Candida spp. We applied the same approach to external otitis in dogs. Malassezia was the dominant fungal genus in dogs' ear skin, whereas Ma. pachydermatis was the main species in the healthy sample. Conversely, we identified a higher representation of Ma. globosa and Ma. sympodialis in otitis affected samples. We demonstrate the suitability of long ribosomal amplicons to characterize the fungal community of complex samples, either healthy or with clinical signs of infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA