Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 3): 812-823, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949989

RESUMO

Small-angle X-ray scattering (SAXS) is an established method for studying nanostructured systems and in particular biological macromolecules in solution. To obtain element-specific information about the sample, anomalous SAXS (ASAXS) exploits changes of the scattering properties of selected atoms when the energy of the incident X-rays is close to the binding energy of their electrons. While ASAXS is widely applied to condensed matter and inorganic systems, its use for biological macromolecules is challenging because of the weak anomalous effect. Biological objects are often only available in small quantities and are prone to radiation damage, which makes biological ASAXS measurements very challenging. The BioSAXS beamline P12 operated by the European Molecular Biology Laboratory (EMBL) at the PETRA III storage ring (DESY, Hamburg) is dedicated to studies of weakly scattering objects. Here, recent developments at P12 allowing for ASAXS measurements are presented. The beamline control, data acquisition and data reduction pipeline of the beamline were adapted to conduct ASAXS experiments. Modelling tools were developed to compute ASAXS patterns from atomic models, which can be used to analyze the data and to help designing appropriate data collection strategies. These developments are illustrated with ASAXS experiments on different model systems performed at the P12 beamline.

2.
Proc Natl Acad Sci U S A ; 115(37): 9080-9085, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150372

RESUMO

Recent technology developments have expanded the wavelength window for biological fluorescence imaging into the shortwave infrared. We show here a mechanistic understanding of how drastic changes in fluorescence imaging contrast can arise from slight changes of imaging wavelength in the shortwave infrared. We demonstrate, in 3D tissue phantoms and in vivo in mice, that light absorption by water within biological tissue increases image contrast due to attenuation of background and highly scattered light. Wavelengths of strong tissue absorption have conventionally been avoided in fluorescence imaging to maximize photon penetration depth and photon collection, yet we demonstrate that imaging at the peak absorbance of water (near 1,450 nm) results in the highest image contrast in the shortwave infrared. Furthermore, we show, through microscopy of highly labeled ex vivo biological tissue, that the contrast improvement from water absorption enables resolution of deeper structures, resulting in a higher imaging penetration depth. We then illustrate these findings in a theoretical model. Our results suggest that the wavelength-dependent absorptivity of water is the dominant optical property contributing to image contrast, and is therefore crucial for determining the optimal imaging window in the infrared.


Assuntos
Raios Infravermelhos , Modelos Teóricos , Imagem Óptica/métodos , Água/química , Animais , Camundongos , Imagem Óptica/instrumentação
3.
Proc Natl Acad Sci U S A ; 115(17): 4465-4470, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626132

RESUMO

Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Meios de Contraste , Corantes Fluorescentes , Raios Infravermelhos , Microscopia Intravital/métodos , Vasos Linfáticos/diagnóstico por imagem , Animais , Bovinos , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Verde de Indocianina , Camundongos , Microscopia de Fluorescência/métodos , Trastuzumab/farmacocinética , Trastuzumab/farmacologia
4.
J Am Chem Soc ; 142(9): 4088-4092, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32073841

RESUMO

Next-generation optoelectronic applications centered in the near-infrared (NIR) and short-wave infrared (SWIR) wavelength regimes require high-quality materials. Among these materials, colloidal InAs quantum dots (QDs) stand out as an infrared-active candidate material for biological imaging, lighting, and sensing applications. Despite significant development of their optical properties, the synthesis of InAs QDs still routinely relies on hazardous, commercially unavailable precursors. Herein, we describe a straightforward single hot injection procedure revolving around In(I)Cl as the key precursor. Acting as a simultaneous reducing agent and In source, In(I)Cl smoothly reacts with a tris(amino)arsenic precursor to yield colloidal InAs quantitatively and at gram scale. Tuning the reaction temperature produces InAs cores with a first excitonic absorption feature in the range of 700-1400 nm. A dynamic disproportionation equilibrium between In(I), In metal, and In(III) opens up additional flexibility in precursor selection. CdSe shell growth on the produced cores enhances their optical properties, furnishing particles with center emission wavelengths between 1000 and 1500 nm and narrow photoluminescence full-width at half-maximum (FWHM) of about 120 meV throughout. The simplicity, scalability, and tunability of the disclosed precursor platform are anticipated to inspire further research on In-based colloidal QDs.

5.
J Phys D Appl Phys ; 52(26): 264001, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-33191950

RESUMO

The first ever demonstration of temporal focusing with short wave infrared (SWIR) excitation and emission is demonstrated, achieving a penetration depth of 500 µm in brain tissue. This is substantially deeper than the highest previously-reported values for temporal focusing imaging in brain tissue, and demonstrates the value of these optimized wavelengths for neurobiological applications.

6.
Biophys J ; 114(11): 2485-2492, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874600

RESUMO

Small-angle x-ray scattering (SAXS) of biological macromolecules in solutions is a widely employed method in structural biology. SAXS patterns include information about the overall shape and low-resolution structure of dissolved particles. Here, we describe how to transform experimental SAXS patterns to feature vectors and how a simple k-nearest neighbor approach is able to retrieve information on overall particle shape and maximal diameter (Dmax) as well as molecular mass directly from experimental scattering data. Based on this transformation, we develop a rapid multiclass shape-classification ranging from compact, extended, and flat categories to hollow and random-chain-like objects. This classification may be employed, e.g., as a decision block in automated data analysis pipelines. Further, we map protein structures from the Protein Data Bank into the classification space and, in a second step, use this mapping as a data source to obtain accurate estimates for the structural parameters (Dmax, molecular mass) of the macromolecule under study based on the experimental scattering pattern alone, without inverse Fourier transform for Dmax. All methods presented are implemented in a Fortran binary DATCLASS, part of the ATSAS data analysis suite, available on Linux, Mac, and Windows and free for academic use.


Assuntos
Análise de Dados , Substâncias Macromoleculares/química , Difração de Raios X , Aprendizado de Máquina , Soluções
7.
Nat Methods ; 12(5): 419-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849637

RESUMO

Assessing similarity between data sets with the reduced χ(2) test requires the estimation of experimental errors, which, if incorrect, may render statistical comparisons invalid. We report a goodness-of-fit test, Correlation Map (CorMap), for assessing differences between one-dimensional spectra independently of explicit error estimates, using only data point correlations. Using small-angle X-ray scattering data, we demonstrate that CorMap maintains the power of the reduced χ(2) test; moreover, CorMap is also applicable to other physical experiments.


Assuntos
Interpretação Estatística de Dados , Modelos Estatísticos , Difração de Raios X , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Animais , Clara de Ovo/química , Humanos , Muramidase/química , Reprodutibilidade dos Testes , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Albumina Sérica/química
8.
J Synchrotron Radiat ; 25(Pt 3): 906-914, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714204

RESUMO

The versatility of small-angle X-ray scattering (SAXS) as a structural biology method is apparent by its compatibility with many experimental set-ups. Most advanced SAXS studies are conducted at dedicated synchrotron beamlines yielding high beam brilliance, throughput and temporal resolution. However, utilizing the full potential of the method while preserving a high degree of automation provides a challenge to any SAXS beamline. This challenge is especially pertinent at the P12 BioSAXS beamline of the EMBL at the PETRAIII Synchrotron DESY (Hamburg, Germany), optimized and dedicated to scattering of macromolecular solutions. Over 200 unique set-ups are possible at this beamline offering various functionalities, including different temporal and spatial resolutions. Presented here is a beamline control and data-acquisition software, BECQUEREL, designed to maximize flexibility and automation in the operation of P12. In the frame of a single intuitive interface the control system allows for convenient operation with all hardware set-ups available at P12 including a robotic sample changer, in-line size-exclusion chromatography, stop-flow devices, microfluidic spinning disk and various in-air settings. Additional functionalities are available to assist the data-collection procedure for novice users, and also routine operation of the support staff.

9.
Angew Chem Int Ed Engl ; 57(17): 4652-4656, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29479792

RESUMO

We present a novel ligand, 5-norbornene-2-nonanoic acid, which can be directly added during established quantum dot (QD) syntheses in organic solvents to generate "clickable" QDs at a few hundred nmol scale. This ligand has a carboxyl group at one terminus to bind to the surface of QDs and a norbornene group at the opposite end that enables straightforward phase transfer of QDs into aqueous solutions via efficient norbornene/tetrazine click chemistry. Our ligand system removes the traditional ligand-exchange step and can produce water-soluble QDs with a high quantum yield and a small hydrodynamic diameter of approximately 12 nm at an order of magnitude higher scale than previous methods. We demonstrate the effectiveness of our approach by incubating azido-functionalized CdSe/CdS QDs with 4T1 cancer cells that are metabolically labeled with a dibenzocyclooctyne-bearing unnatural sugar. The QDs exhibit high targeting efficiency and minimal nonspecific binding.

10.
Angew Chem Int Ed Engl ; 56(42): 13126-13129, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28806473

RESUMO

Bright fluorophores in the near-infrared and shortwave infrared (SWIR) regions of the electromagnetic spectrum are essential for optical imaging in vivo. In this work, we utilized a 7-dimethylamino flavylium heterocycle to construct a panel of novel red-shifted polymethine dyes, with emission wavelengths from 680 to 1045 nm. Photophysical characterization revealed that the 1- and 3-methine dyes display enhanced photostability and the 5- and 7-methine dyes exhibit exceptional brightness for their respective spectral regions. A micelle formulation of the 7-methine facilitated SWIR imaging in mice. This report presents the first polymethine dye designed and synthesized for SWIR in vivo imaging.

11.
J Am Chem Soc ; 138(41): 13469-13472, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27690411

RESUMO

Clusters have been identified as important growth intermediates during group III-V quantum dot (QD) formation. Here we report a one-solvent protocol that integrates synthesis, purification, and mass characterization of indium phosphide (InP) QD growth mixtures. The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) successfully tracks the evolution of clusters and the formation of QDs throughout the synthesis. Similar clusters are observed during the formation of large particles, suggesting that these clusters serve as a reservoir for QD formation. Combining MALDI and NMR techniques further enables us to extract extinction coefficients and construct sizing curves for cluster-free InP QDs. The use of MALDI MS opens new opportunities for characterization and mechanistic studies of small-sized air-sensitive clusters or QDs.

12.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 76-85, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615862

RESUMO

Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.


Assuntos
Espalhamento a Baixo Ângulo , Interface Usuário-Computador , Automação , Gráficos por Computador , Modelos Teóricos , Síncrotrons
13.
Angew Chem Int Ed Engl ; 54(48): 14299-303, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26437711

RESUMO

Control of quantum dot (QD) precursor chemistry has been expected to help improve the size control and uniformity of III-V QDs such as indium phosphide and indium arsenide. Indeed, experimental results for other QD systems are consistent with the theoretical prediction that the rate of precursor conversion is an important factor controlling QD size and size distribution. We synthesized and characterized the reactivity of a variety of group-V precursors in order to determine if precursor chemistry could be used to improve the quality of III-V QDs. Despite slowing down precursor conversion rate by multiple orders of magnitude, the less reactive precursors do not yield the expected increase in size and improvement in size distribution. This result disproves the widely accepted explanation for the shortcoming of current III-V QD syntheses and points to the need for a new generalizable theoretical picture for the mechanism of QD formation and growth.

14.
Blood ; 117(7): 2121-8, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21163927

RESUMO

The individual risk of infection and requirements for medical treatment after high-dose chemotherapy have been unpredictable. In this prospective, multicenter, open-label study we investigated the potential of granulocyte colony-stimulating factor (G-CSF) responsiveness as a predictor. A total of 168 patients with multiple myeloma or lymphoma received a single dose of subcutaneous G-CSF (lenograstim, 263 µg) after high-dose chemotherapy. Highly variable leukocyte peaks were measured and grouped as low (quartile 1; leukocytes 100-10 100/µL), medium (quartile 2; leukocytes > 10 100-18 300/µL), and high (quartiles 3/4; leukocytes > 18 300-44 800/µL). G-CSF responsiveness (low vs medium vs high) was inversely correlated with febrile neutropenia (77% vs 60% vs 48%; P = .0037); the rate of infection, including fever of unknown origin (91% vs 67% vs 54%; P < .0001); days with intravenous antibiotics (9 vs 6 vs 5; P < .0001); and antifungal therapy (P = .042). In multivariate analysis, G-CSF responsiveness remained the only factor significantly associated with infection (P = .016). In addition, G-CSF responsiveness was inversely correlated with grade 3/4 oral mucositis (67% vs 33% vs 23%; P < .0001). G-CSF responsiveness appears as a signature of the myeloid marrow reserve predicting defense against neutropenic infection after intensive chemotherapy. This study is registered at http://www.clinicaltrials.gov as NCT01085058.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos , Infecções/etiologia , Linfoma/complicações , Linfoma/tratamento farmacológico , Mieloma Múltiplo/complicações , Mieloma Múltiplo/tratamento farmacológico , Adolescente , Adulto , Idoso , Feminino , Humanos , Infecções/sangue , Lenograstim , Linfoma/sangue , Masculino , Melfalan/administração & dosagem , Melfalan/efeitos adversos , Pessoa de Meia-Idade , Mieloma Múltiplo/sangue , Análise Multivariada , Neutropenia/sangue , Neutropenia/etiologia , Transplante de Células-Tronco de Sangue Periférico , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Proteínas Recombinantes , Fatores de Risco , Adulto Jovem
15.
Pharmaceutics ; 15(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631282

RESUMO

Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To further exploit the potential of mRNA therapeutics, better control of the relationship between LNP formulation composition with internal structure and transfection efficiency in vitro is necessary. We compared two well-established ionizable lipids, namely DODMA and MC3, in combination with two helper lipids, DOPE and DOPC, and two polymer-grafted lipids, either with polysarcosine (pSar) or polyethylene glycol (PEG). In addition to standard physicochemical characterization (size, zeta potential, RNA accessibility), small-angle X-ray scattering (SAXS) was used to analyze the structure of the LNPs. To assess biological activity, we performed transfection and cell-binding assays in human peripheral blood mononuclear cells (hPBMCs) using Thy1.1 reporter mRNA and Cy5-labeled mRNA, respectively. With the SAXS measurements, we were able to clearly reveal the effects of substituting the ionizable and helper lipid on the internal structure of the LNPs. In contrast, pSar as stealth moieties affected the LNPs in a different manner, by changing the surface morphology towards higher roughness. pSar LNPs were generally more active, where the highest transfection efficiency was achieved with the LNP formulation composition of MC3/DOPE/pSar. Our study highlights the utility of pSar for improved mRNA LNP products and the importance of pSar as a novel stealth moiety enhancing efficiency in future LNP formulation development. SAXS can provide valuable information for the rational development of such novel formulations by elucidating structural features in different LNP compositions.

16.
Commun Biol ; 6(1): 1057, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853181

RESUMO

Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.


Assuntos
Elétrons , Proteínas , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Proteínas/química , Lasers
17.
J Biol Chem ; 286(9): 7587-600, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21193411

RESUMO

Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.


Assuntos
Matriz Extracelular/enzimologia , Hemopexina/química , Hemopexina/metabolismo , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cristalografia , Dimerização , Ativação Enzimática/fisiologia , Células HeLa , Hemopexina/genética , Humanos , Metaloproteinase 14 da Matriz/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese , Estrutura Terciária de Proteína , Solubilidade , Relação Estrutura-Atividade
18.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1315-1336, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322416

RESUMO

Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5 Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2 Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.


Assuntos
Benchmarking , Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X , Consenso , Reprodutibilidade dos Testes , Proteínas/química , Solventes
19.
J Appl Crystallogr ; 54(Pt 1): 343-355, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833657

RESUMO

The ATSAS software suite encompasses a number of programs for the processing, visualization, analysis and modelling of small-angle scattering data, with a focus on the data measured from biological macromolecules. Here, new developments in the ATSAS 3.0 package are described. They include IMSIM, for simulating isotropic 2D scattering patterns; IMOP, to perform operations on 2D images and masks; DATRESAMPLE, a method for variance estimation of structural invariants through parametric resampling; DATFT, which computes the pair distance distribution function by a direct Fourier transform of the scattering data; PDDFFIT, to compute the scattering data from a pair distance distribution function, allowing comparison with the experimental data; a new module in DATMW for Bayesian consensus-based concentration-independent molecular weight estimation; DATMIF, an ab initio shape analysis method that optimizes the search model directly against the scattering data; DAMEMB, an application to set up the initial search volume for multiphase modelling of membrane proteins; ELLLIP, to perform quasi-atomistic modelling of liposomes with elliptical shapes; NMATOR, which models conformational changes in nucleic acid structures through normal mode analysis in torsion angle space; DAMMIX, which reconstructs the shape of an unknown intermediate in an evolving system; and LIPMIX and BILMIX, for modelling multilamellar and asymmetric lipid vesicles, respectively. In addition, technical updates were deployed to facilitate maintainability of the package, which include porting the PRIMUS graphical interface to Qt5, updating SASpy - a PyMOL plugin to run a subset of ATSAS tools - to be both Python 2 and 3 compatible, and adding utilities to facilitate mmCIF compatibility in future ATSAS releases. All these features are implemented in ATSAS 3.0, freely available for academic users at https://www.embl-hamburg.de/biosaxs/software.html.

20.
J Appl Crystallogr ; 53(Pt 2): 536-539, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280325

RESUMO

This article presents IMSIM, an application to simulate two-dimensional small-angle X-ray scattering patterns and, further, one-dimensional profiles from biological macromolecules in solution. IMSIM implements a statistical approach yielding two-dimensional images in TIFF, CBF or EDF format, which may be readily processed by existing data-analysis pipelines. Intensities and error estimates of one-dimensional patterns obtained from the radial average of the two-dimensional images exhibit the same statistical properties as observed with actual experimental data. With initial input on an absolute scale, [cm-1]/c[mg ml-1], the simulated data frames may also be scaled to absolute scale such that the forward scattering after subtraction of the background is proportional to the molecular weight of the solute. The effects of changes of concentration, exposure time, flux, wavelength, sample-detector distance, detector dimensions, pixel size, and the mask as well as incident beam position can be considered for the simulation. The simulated data may be used in method development, for educational purposes, and also to determine the most suitable beamline setup for a project prior to the application and use of the actual beamtime. IMSIM is available as part of the ATSAS software package (3.0.0) and is freely available for academic use (http://www.embl-hamburg.de/biosaxs/download.html).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA