Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 203: 117503, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388495

RESUMO

Water scarcity forces the science to find the most environmentally friendly propulsion technology for supplying plentiful freshwater at low energy costs. Membrane Distillation well meets criteria of eco-friendly management of natural resources, but it is not yet competitive on scale. Herein, we use a dichalchogenide compound (Bi2Te3) as a conceivable source to accelerate the redesign of advanced membranes technologies such as thermally driven membrane distillation. A procedure based on assisted dispersant liquid phase exfoliation is used to fill PVDF membranes. Key insights are gained in the crucial role of this topological material confined in hydrophobic membranes dedicated to recovery of freshwater from synthetic seawater. Intensified water flux together with reduced energy consumption is obtained into one pot, thereby gathering ultrafast production and thermal efficiency in a single device. Bi2Te3-enabled membranes show ability to reduce the resistance to mass transfer while high resistance to heat loss is opposite. Permeate flux is kept stable and salt rejection is higher than 99.99% during 23 h-MD test. Our results confirm the effectiveness of chalcogenides as frontier materials for new-concept water desalination through breakthrough thermally-driven membrane distillation, which is regarded as a new low-energy and sustainable solution to address the growing demand for access to freshwater.


Assuntos
Purificação da Água , Água , Destilação , Água Doce , Membranas Artificiais
2.
Nanoscale Adv ; 2(10): 4728-4739, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132930

RESUMO

Membrane distillation is envisaged to be a promising best practice to recover freshwater from seawater with the prospect of building low energy-consuming devices powered by natural and renewable energy sources in remote and less accessible areas. Moreover, there is an additional benefit of integrating this green technology with other well-established operations dedicated to desalination. Today, the development of membrane distillation depends on the productivity-efficiency ratio on a large scale. Despite hydrophobic commercial membranes being widely used, no membrane with suitable morphological and chemical feature is readily available in the market. Thus, there is a real need to identify best practices for developing new efficient membranes for more productive and eco-sustainable membrane distillation devices. Here, we propose engineered few-layer graphene membranes, showing enhanced trans-membrane fluxes and total barrier action against NaCl ions. The obtained performances are linked with filling polymeric membranes with few-layer graphene of 490 nm in lateral size, produced by the wet-jet milling technology. The experimental evidence, together with comparative analyses, confirmed that the use of more largely sized few-layer graphene leads to superior productivity related efficiency trade-off for the membrane distillation process. Herein, it was demonstrated that the quality of exfoliation is a crucial factor for addressing the few-layer graphene supporting the separation capability of the host membranes designed for water desalination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA