Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Geriatr Psychiatry ; 32(3): 280-292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37839909

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a heterogeneous condition; multiple underlying neurobiological and behavioral substrates are associated with treatment response variability. Understanding the sources of this variability and predicting outcomes has been elusive. Machine learning (ML) shows promise in predicting treatment response in MDD, but its application is limited by challenges to the clinical interpretability of ML models, and clinicians often lack confidence in model results. In order to improve the interpretability of ML models in clinical practice, our goal was to demonstrate the derivation of treatment-relevant patient profiles comprised of clinical and demographic information using a novel ML approach. METHODS: We analyzed data from six clinical trials of pharmacological treatment for depression (total n = 5438) using the Differential Prototypes Neural Network (DPNN), a ML model that derives patient prototypes which can be used to derive treatment-relevant patient clusters while learning to generate probabilities for differential treatment response. A model classifying remission and outputting individual remission probabilities for five first-line monotherapies and three combination treatments was trained using clinical and demographic data. Prototypes were evaluated for interpretability by assessing differences in feature distributions (e.g. age, sex, symptom severity) and treatment-specific outcomes. RESULTS: A 3-prototype model achieved an area under the receiver operating curve of 0.66 and an expected absolute improvement in remission rate for those receiving the best predicted treatment of 6.5% (relative improvement of 15.6%) compared to the population remission rate. We identified three treatment-relevant patient clusters. Cluster A patients tended to be younger, to have increased levels of fatigue, and more severe symptoms. Cluster B patients tended to be older, female, have less severe symptoms, and the highest remission rates. Cluster C patients had more severe symptoms, lower remission rates, more psychomotor agitation, more intense suicidal ideation, and more somatic genital symptoms. CONCLUSION: It is possible to produce novel treatment-relevant patient profiles using ML models; doing so may improve interpretability of ML models and the quality of precision medicine treatments for MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Feminino , Transtorno Depressivo Maior/terapia , Antidepressivos/uso terapêutico , Depressão , Ideação Suicida , Ansiedade/terapia
2.
Neuroimage ; 208: 116442, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31821865

RESUMO

In conventional non-quantitative magnetic resonance imaging, image contrast is consistent within images, but absolute intensity can vary arbitrarily between scans. For quantitative analysis of intensity data, images are typically normalized to a consistent reference. The most convenient reference is a tissue that is always present in the image, and is unlikely to be affected by pathological processes. In multiple sclerosis neuroimaging, both the white and gray matter are affected, so normalization techniques that depend on brain tissue may introduce bias or remove biological changes of interest. We introduce a complementary procedure, image "calibration," the goal of which is to remove technical intensity artifacts while preserving biological differences. We demonstrate a deep learning approach to segmenting fat from within the orbit of the eyes on T1-weighted images at 1.5 and 3 â€‹T to use as a reference tissue, and use it to calibrate 1018 scans from 256 participants in a study of pediatric-onset multiple sclerosis. The machine segmentations agreed with the adjudicating expert (DF) segmentations better than did those of other expert humans, and calibration resulted in better agreement with semi-quantitative magnetization transfer ratio imaging than did normalization with the WhiteStripe1 algorithm. We suggest that our method addresses two key priorities in the field: (1) it provides a robust option for serial calibration of conventional scans, allowing comparison of disease change in persons imaged at multiple time points in their disease; and (ii) the technique is fast, as the deep learning segmentation takes only 0.5 â€‹s/scan, which is feasible for both large and small datasets.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Órbita/diagnóstico por imagem , Adolescente , Calibragem , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador/normas , Estudos Longitudinais , Imageamento por Ressonância Magnética/normas , Masculino , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/normas
3.
Transl Psychiatry ; 14(1): 263, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906883

RESUMO

Major depressive disorder (MDD) is the leading cause of disability worldwide, yet treatment selection still proceeds via "trial and error". Given the varied presentation of MDD and heterogeneity of treatment response, the use of machine learning to understand complex, non-linear relationships in data may be key for treatment personalization. Well-organized, structured data from clinical trials with standardized outcome measures is useful for training machine learning models; however, combining data across trials poses numerous challenges. There is also persistent concern that machine learning models can propagate harmful biases. We have created a methodology for organizing and preprocessing depression clinical trial data such that transformed variables harmonized across disparate datasets can be used as input for feature selection. Using Bayesian optimization, we identified an optimal multi-layer dense neural network that used data from 21 clinical and sociodemographic features as input in order to perform differential treatment benefit prediction. With this combined dataset of 5032 individuals and 6 drugs, we created a differential treatment benefit prediction model. Our model generalized well to the held-out test set and produced similar accuracy metrics in the test and validation set with an AUC of 0.7 when predicting binary remission. To address the potential for bias propagation, we used a bias testing performance metric to evaluate the model for harmful biases related to ethnicity, age, or sex. We present a full pipeline from data preprocessing to model validation that was employed to create the first differential treatment benefit prediction model for MDD containing 6 treatment options.


Assuntos
Teorema de Bayes , Transtorno Depressivo Maior , Aprendizado de Máquina , Humanos , Transtorno Depressivo Maior/terapia , Ensaios Clínicos como Assunto , Feminino , Masculino , Antidepressivos/uso terapêutico , Adulto , Pessoa de Meia-Idade , Redes Neurais de Computação
5.
Psychiatry Res ; 308: 114336, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953204

RESUMO

Aifred is a clinical decision support system (CDSS) that uses artificial intelligence to assist physicians in selecting treatments for major depressive disorder (MDD) by providing probabilities of remission for different treatment options based on patient characteristics. We evaluated the utility of the CDSS as perceived by physicians participating in simulated clinical interactions. Twenty physicians who were either staff or residents in psychiatry or family medicine completed a study in which they had three 10-minute clinical interactions with standardized patients portraying mild, moderate, and severe episodes of MDD. During these scenarios, physicians were given access to the CDSS, which they could use in their treatment decisions. The perceived utility of the CDSS was assessed through self-report questionnaires, scenario observations, and interviews. 60% of physicians perceived the CDSS to be a useful tool in their treatment-selection process, with family physicians perceiving the greatest utility. Moreover, 50% of physicians would use the tool for all patients with depression, with an additional 35% noting that they would reserve the tool for more severe or treatment-resistant patients. Furthermore, clinicians found the tool to be useful in discussing treatment options with patients. The efficacy of this CDSS and its potential to improve treatment outcomes must be further evaluated in clinical trials.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Transtorno Depressivo Maior , Médicos , Inteligência Artificial , Depressão/terapia , Transtorno Depressivo Maior/terapia , Humanos
6.
Front Artif Intell ; 4: 561528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250463

RESUMO

Introduction: Suicidal ideation (SI) is prevalent in the general population, and is a risk factor for suicide. Predicting which patients are likely to have SI remains challenging. Deep Learning (DL) may be a useful tool in this context, as it can be used to find patterns in complex, heterogeneous, and incomplete datasets. An automated screening system for SI could help prompt clinicians to be more attentive to patients at risk for suicide. Methods: Using the Canadian Community Health Survey-Mental Health Component, we trained a DL model based on 23,859 survey responses to classify patients with and without SI. Models were created to classify both lifetime SI and SI over the last 12 months. From 582 possible parameters we produced 96- and 21-feature versions of the models. Models were trained using an undersampling procedure that balanced the training set between SI and non-SI; validation was done on held-out data. Results: For lifetime SI, the 96 feature model had an Area under the receiver operating curve (AUC) of 0.79 and the 21 feature model had an AUC of 0.77. For SI in the last 12 months the 96 feature model had an AUC of 0.71 and the 21 feature model had an AUC of 0.68. In addition, sensitivity analyses demonstrated feature relationships in line with existing literature. Discussion: Although further study is required to ensure clinical relevance and sample generalizability, this study is an initial proof of concept for the use of DL to improve identification of SI. Sensitivity analyses can help improve the interpretability of DL models. This kind of model would help start conversations with patients which could lead to improved care and a reduction in suicidal behavior.

7.
PLoS One ; 16(11): e0258400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767577

RESUMO

Machine-assisted treatment selection commonly follows one of two paradigms: a fully personalized paradigm which ignores any possible clustering of patients; or a sub-grouping paradigm which ignores personal differences within the identified groups. While both paradigms have shown promising results, each of them suffers from important limitations. In this article, we propose a novel deep learning-based treatment selection approach that is shown to strike a balance between the two paradigms using latent-space prototyping. Our approach is specifically tailored for domains in which effective prototypes and sub-groups of patients are assumed to exist, but groupings relevant to the training objective are not observable in the non-latent space. In an extensive evaluation, using both synthetic and Major Depressive Disorder (MDD) real-world clinical data describing 4754 MDD patients from clinical trials for depression treatment, we show that our approach favorably compares with state-of-the-art approaches. Specifically, the model produced an 8% absolute and 23% relative improvement over random treatment allocation. This is potentially clinically significant, given the large number of patients with MDD. Therefore, the model can bring about a much desired leap forward in the way depression is treated today.


Assuntos
Antidepressivos/uso terapêutico , Tomada de Decisão Clínica/métodos , Aprendizado Profundo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Área Sob a Curva , Ensaios Clínicos como Assunto , Quimioterapia Combinada/métodos , Humanos , Medicina de Precisão/métodos , Indução de Remissão , Resultado do Tratamento
8.
JMIR Form Res ; 5(10): e31862, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34694234

RESUMO

BACKGROUND: Approximately two-thirds of patients with major depressive disorder do not achieve remission during their first treatment. There has been increasing interest in the use of digital, artificial intelligence-powered clinical decision support systems (CDSSs) to assist physicians in their treatment selection and management, improving the personalization and use of best practices such as measurement-based care. Previous literature shows that for digital mental health tools to be successful, the tool must be easy for patients and physicians to use and feasible within existing clinical workflows. OBJECTIVE: This study aims to examine the feasibility of an artificial intelligence-powered CDSS, which combines the operationalized 2016 Canadian Network for Mood and Anxiety Treatments guidelines with a neural network-based individualized treatment remission prediction. METHODS: Owing to the COVID-19 pandemic, the study was adapted to be completed entirely remotely. A total of 7 physicians recruited outpatients diagnosed with major depressive disorder according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. Patients completed a minimum of one visit without the CDSS (baseline) and 2 subsequent visits where the CDSS was used by the physician (visits 1 and 2). The primary outcome of interest was change in appointment length after the introduction of the CDSS as a proxy for feasibility. Feasibility and acceptability data were collected through self-report questionnaires and semistructured interviews. RESULTS: Data were collected between January and November 2020. A total of 17 patients were enrolled in the study; of the 17 patients, 14 (82%) completed the study. There was no significant difference in appointment length between visits (introduction of the tool did not increase appointment length; F2,24=0.805; mean squared error 58.08; P=.46). In total, 92% (12/13) of patients and 71% (5/7) of physicians felt that the tool was easy to use; 62% (8/13) of patients and 71% (5/7) of physicians rated that they trusted the CDSS. Of the 13 patients, 6 (46%) felt that the patient-clinician relationship significantly or somewhat improved, whereas 7 (54%) felt that it did not change. CONCLUSIONS: Our findings confirm that the integration of the tool does not significantly increase appointment length and suggest that the CDSS is easy to use and may have positive effects on the patient-physician relationship for some patients. The CDSS is feasible and ready for effectiveness studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT04061642; http://clinicaltrials.gov/ct2/show/NCT04061642.

9.
BJPsych Open ; 7(1): e22, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33403948

RESUMO

BACKGROUND: Recently, artificial intelligence-powered devices have been put forward as potentially powerful tools for the improvement of mental healthcare. An important question is how these devices impact the physician-patient interaction. AIMS: Aifred is an artificial intelligence-powered clinical decision support system (CDSS) for the treatment of major depression. Here, we explore the use of a simulation centre environment in evaluating the usability of Aifred, particularly its impact on the physician-patient interaction. METHOD: Twenty psychiatry and family medicine attending staff and residents were recruited to complete a 2.5-h study at a clinical interaction simulation centre with standardised patients. Each physician had the option of using the CDSS to inform their treatment choice in three 10-min clinical scenarios with standardised patients portraying mild, moderate and severe episodes of major depression. Feasibility and acceptability data were collected through self-report questionnaires, scenario observations, interviews and standardised patient feedback. RESULTS: All 20 participants completed the study. Initial results indicate that the tool was acceptable to clinicians and feasible for use during clinical encounters. Clinicians indicated a willingness to use the tool in real clinical practice, a significant degree of trust in the system's predictions to assist with treatment selection, and reported that the tool helped increase patient understanding of and trust in treatment. The simulation environment allowed for the evaluation of the tool's impact on the physician-patient interaction. CONCLUSIONS: The simulation centre allowed for direct observations of clinician use and impact of the tool on the clinician-patient interaction before clinical studies. It may therefore offer a useful and important environment in the early testing of new technological tools. The present results will inform further tool development and clinician training materials.

10.
Front Artif Intell ; 2: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33733120

RESUMO

Background: Deep learning has utility in predicting differential antidepressant treatment response among patients with major depressive disorder, yet there remains a paucity of research describing how to interpret deep learning models in a clinically or etiologically meaningful way. In this paper, we describe methods for analyzing deep learning models of clinical and demographic psychiatric data, using our recent work on a deep learning model of STAR*D and CO-MED remission prediction. Methods: Our deep learning analysis with STAR*D and CO-MED yielded four models that predicted response to the four treatments used across the two datasets. Here, we use classical statistics and simple data representations to improve interpretability of the features output by our deep learning model and provide finer grained understanding of their clinical and etiological significance. Specifically, we use representations derived from our model to yield features predicting both treatment non-response and differential treatment response to four standard antidepressants, and use linear regression and t-tests to address questions about the contribution of trauma, education, and somatic symptoms to our models. Results: Traditional statistics were able to probe the input features of our deep learning models, reproducing results from previous research, while providing novel insights into depression causes and treatments. We found that specific features were predictive of treatment response, and were able to break these down by treatment and non-response categories; that specific trauma indices were differentially predictive of baseline depression severity; that somatic symptoms were significantly different between males and females, and that education and low income proved important psycho-social stressors associated with depression. Conclusion: Traditional statistics can augment interpretation of deep learning models. Such interpretation can lend us new hypotheses about depression and contribute to building causal models of etiology and prognosis. We discuss dataset-specific effects and ideal clinical samples for machine learning analysis aimed at improving tools to assist in optimizing treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA