Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 24(11): 3082-91, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25691535

RESUMO

Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.


Assuntos
Epilepsia do Lobo Temporal/genética , Galanina/genética , Adulto , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Mutação de Sentido Incorreto , Linhagem , Ligação Proteica , Transdução de Sinais
2.
Sci Rep ; 9(1): 19926, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882941

RESUMO

We have previously developed efficient peptide-based nucleic acid delivery vectors PF14 and NF55, where we have shown that these vectors preferentially transfect lung tissue upon systemic administration with the nucleic acid. In the current work, we have explored the utilization and potential of these vectors for the lung-targeted gene therapy. Accordingly, we assessed the efficacy of these peptides in (i) two different lung disease models - acute lung inflammation and asthma in mice and (ii) using two different nucleic acid cargos - siRNA and pDNA encoding shRNA. Using RNAi against cytokine TNFα, we showed efficient anti-inflammatory effects in both disease models and observed decreased disease symptoms. Our results highlight the potential of our transfection vectors for lung gene therapy.


Assuntos
Asma/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Ácidos Nucleicos/metabolismo , Interferência de RNA/fisiologia , Animais , Asma/imunologia , Asma/terapia , Feminino , Terapia Genética , Inflamação/imunologia , Inflamação/terapia , Masculino , Camundongos , Reação em Cadeia da Polimerase
3.
Mol Ther Nucleic Acids ; 10: 28-35, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499941

RESUMO

Although advances in genomics and experimental gene therapy have opened new possibilities for treating otherwise incurable diseases, the transduction of nucleic acids into the cells and delivery in vivo remain challenging. The high molecular weight and anionic nature of nucleic acids require their packing into nanoparticles for the delivery. The efficacy of nanoparticle drugs necessitates the high bioactivity of constituents, but their distribution in organisms is mostly governed by the physical properties of nanoparticles, and therefore, generation of stable particles with strictly defined characteristics is highly essential. Using previously designed efficient cell-penetrating peptide NF55, we searched for strategies enabling control over the nanoparticle formation and properties to further improve transfection efficacy. The size of the NF55/pDNA nanoparticles correlates with the concentration of its constituents at the beginning of assembly, but characteristics of nanoparticles measured by DLS do not reliably predict the applicability of particles in in vivo studies. We introduce a new formulation approach called cryo-concentration, where we acquired stable and homogeneous nanoparticles for administration in vivo. The cryo-concentrated NF55/pDNA nanoparticles exhibit several advantages over standard formulation: They have long shelf-life and do not aggregate after reconstitution, have excellent stability against enzymatic degradation, and show significantly higher bioactivity in vivo.

4.
Sci Rep ; 7(1): 9159, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831162

RESUMO

Magnetic nanoparticles (MNPs, Fe3O4) incorporated into the complexes of cell penetrating peptides (CPPs)-oligonucleotides (ONs) promoted the cell transfection for plasmid transfection, splice correction, and gene silencing efficiencies. Six types of cell penetrating peptides (CPPs; PeptFect220 (denoted PF220), PF221, PF222, PF223, PF224 and PF14) and three types of gene therapeutic agents (plasmid (pGL3), splicing correcting oligonucleotides (SCO), and small interfering RNA (siRNA) were investigated. Magnetic nanoparticles incorporated into the complexes of CPPs-pGL3, CPPs-SCO, and CPPs-siRNA showed high cell biocompatibility and efficiently transfected the investigated cells with pGL3, SCO, and siRNA, respectively. Gene transfer vectors formed among PF14, SCO, and MNPs (PF14-SCO-MNPs) showed a superior transfection efficiency (up to 4-fold) compared to the noncovalent PF14-SCO complex, which was previously reported with a higher efficiency compared to commercial vector called Lipofectamine™2000. The high transfection efficiency of the new complexes (CPPs-SCO-MNPs) may be attributed to the morphology, low cytotoxicity, and the synergistic effect of MNPs and CPPs. PF14-pDNA-MNPs is an efficient complex for in vivo gene delivery upon systemic administration. The conjugation of CPPs-ONs with inorganic magnetic nanoparticles (Fe3O4) may open new venues for selective and efficient gene therapy.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Técnicas de Transferência de Genes , Nanopartículas de Magnetita/administração & dosagem , Oligonucleotídeos/genética , Animais , Linhagem Celular , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Feminino , Inativação Gênica , Células HeLa , Humanos , Nanopartículas de Magnetita/química , Camundongos , Plasmídeos/genética , RNA Interferente Pequeno/genética , Transfecção
5.
J Control Release ; 241: 135-143, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27664329

RESUMO

As the field of gene therapy progresses, an increasingly urgent need has arisen for efficient and non-toxic vectors for the in vivo delivery of nucleic acids. Cell-penetrating peptides (CPP) are very efficient transfection reagents in vitro, however, their application in vivo needs improvement. To enhance in vivo transfection we designed various CPPs based on previous knowledge of internalization studies and physiochemical properties of NickFect (NF) nanoparticles. We show that increment of the helicity of these Transportan10 analogues improves the transfection efficiency. We rationally design by modifying the net charge and the helicity of the CPP a novel amphipathic α-helical peptide NF55 for in vivo application. NF55 condenses DNA into stable nanoparticles that are resistant to protease degradation, promotes endosomal escape, and transfects the majority of cells in a large cell population. We demonstrate that NF55 mediates DNA delivery in vivo with gene induction efficiency that is comparable to commercial transfection reagents. In addition to gene induction in healthy mice, NF55/DNA nanoparticles showed promising tumor transfection in various mouse tumor models, including an intracranial glioblastoma model. The efficiency of NF55 to convey DNA specifically into tumor tissue increased even further after coupling a PEG2000 to the peptide via a disulphide-bond. Furthermore, a solid formulation of NF55/DNA displayed an excellent stability profile without additives or special storage conditions. Together, its high transfection efficacy and stability profile make NF55 an excellent vector for the delivery of DNA in vivo.


Assuntos
Peptídeos Penetradores de Células/química , DNA/administração & dosagem , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Nanopartículas/química , Sequência de Aminoácidos , Sobrevivência Celular/efeitos dos fármacos , DNA/genética , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Plasmídeos , Conformação Proteica , Transfecção
6.
Expert Opin Ther Targets ; 19(12): 1665-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26220265

RESUMO

INTRODUCTION: Galanin is a 29/30 amino acid long neuropeptide that is widely expressed in the brains of many mammals. Galanin exerts its biological activities through three different G protein-coupled receptors, GalR1, GalR2 and GalR3. The widespread distribution of galanin and its receptors in the CNS and the various physiological and pharmacological effects of galanin make the galanin receptors attractive drug targets. AREAS COVERED: This review provides an overview of the role of galanin and its receptors in the CNS, the involvement of the galaninergic system in various neurological diseases and the development of new galanin receptor-specific ligands. EXPERT OPINION: Recent advances and novel approaches in migrating the directions of subtype-selective ligand development and chemical modifications of the peptide backbone highlight the importance of the galanin neurochemical system as a potential target for drug development.


Assuntos
Terapia de Alvo Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Receptores de Galanina/metabolismo , Animais , Desenho de Fármacos , Galanina/metabolismo , Humanos , Ligantes , Doenças do Sistema Nervoso/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA