Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Epilepsia ; 57(9): 1398-405, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27440235

RESUMO

OBJECTIVE: Fracture risk is a serious comorbidity in epilepsy and may relate to the use of antiepileptic drugs (AEDs). Many AEDs inhibit ion channel function, and the expression of these channels in osteoblasts raises the question of whether altered bone signaling increases bone fragility. We aimed to confirm the expression of voltage-gated sodium (NaV ) channels in mouse osteoblasts, and to investigate the action of carbamazepine and phenytoin on NaV channels. METHODS: Immunocytochemistry was performed on primary calvarial osteoblasts extracted from neonatal C57BL/6J mice and additional RNA sequencing (RNASeq) was included to confirm expression of NaV . Whole-cell patch-clamp recordings were made to identify the native currents expressed and to assess the actions of carbamazepine (50 µm) or phenytoin (50 µm). RESULTS: NaV expression was demonstrated with immunocytochemistry, RNA sequencing, and functionally, with demonstration of robust tetrodotoxin-sensitive and voltage-activated inward currents. Application of carbamazepine or phenytoin resulted in significant inhibition of current amplitude for carbamazepine (31.6 ± 5.9%, n = 9; p < 0.001), and for phenytoin (35.5 ± 6.9%, n = 7; p < 0.001). SIGNIFICANCE: Mouse osteoblasts express NaV , and native NaV currents are blocked by carbamazepine and phenytoin, supporting our hypothesis that AEDs can directly influence osteoblast function and potentially affect bone strength.


Assuntos
Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Osteoblastos/efeitos dos fármacos , Fenitoína/farmacologia , Canais de Sódio/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Estimulação Elétrica , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Técnicas de Patch-Clamp , RNA Mensageiro , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
3.
PLoS One ; 12(1): e0169974, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076384

RESUMO

In this study, we investigated the relative efficacy of different classes of commonly used anti-epileptic drugs (AEDs) with different mechanisms of action, individually and in combination, to suppress epileptiform discharges in an in vitro model. Extracellular field potential were recorded in 450 µm thick transverse hippocampal slices prepared from juvenile Wistar rats, in which "epileptiform discharges" (ED's) were produced with a high-K+ (8.5 mM) bicarbonate-buffered saline solution. Single and dual recordings in stratum pyramidale of CA1 and CA3 regions were performed with 3-5 MΩ glass microelectrodes. All drugs-lamotrigine (LTG), phenytoin (PHT) and valproate (VPA)-were applied to the slice by superfusion at a rate of 2 ml/min at 32°C. Effects upon frequency of ED's were assessed for LTG, PHT and VPA applied at different concentrations, in isolation and in combination. We demonstrated that high-K+ induced ED frequency was reversibly reduced by LTG, PHT and VPA, at concentrations corresponding to human therapeutic blood plasma concentrations. With a protocol using several applications of drugs to the same slice, PHT and VPA in combination displayed additivity of effect with 50µM PHT and 350µM VPA reducing SLD frequency by 44% and 24% individually (n = 19), and together reducing SLD frequency by 66% (n = 19). 20µM LTG reduced SLD frequency by 32% and 350µM VPA by 16% (n = 18). However, in combination there was a supra-linear suppression of ED's of 64% (n = 18). In another independent set of experiments, similar results of drug combination responses were also found. In conclusion, a combination of conventional AEDs with different mechanisms of action, PHT and VPA, displayed linear additivity of effect on epileptiform activity. More intriguingly, a combination of LTG and VPA considered particularly efficacious clinically showed a supra-additive suppression of ED's. This approach may be useful as an in vitro platform for assessing drug combination efficacy.


Assuntos
Anticonvulsivantes/administração & dosagem , Fenitoína/administração & dosagem , Convulsões/tratamento farmacológico , Convulsões/patologia , Triazinas/administração & dosagem , Ácido Valproico/administração & dosagem , Animais , Anticonvulsivantes/farmacologia , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Técnicas In Vitro , Lamotrigina , Masculino , Modelos Teóricos , Fenitoína/farmacologia , Ratos , Ratos Wistar , Convulsões/fisiopatologia , Resultado do Tratamento , Triazinas/farmacologia , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA