Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2220684120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186836

RESUMO

Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aß plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aß uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aß uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Transgênicos , Fenótipo , Modelos Animais de Doenças
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099562

RESUMO

High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated ß-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between ß-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Homocisteína/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Homocisteína/química , Humanos , Espectrometria de Mobilidade Iônica , Cinética , Camundongos Transgênicos , Modelos Biológicos , Polifenóis/farmacologia , Saccharomyces cerevisiae/metabolismo
3.
J Neuroinflammation ; 20(1): 174, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496076

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia in the world. The pathology of AD is affiliated with the elevation of both tau (τ) and ß-amyloid (Aß) pathologies. Yet, the direct link between natural τ expression on glia cell activity and Aß remains unclear. While experiments in mouse models suggest that an increase in Aß exacerbates τ pathology when expressed under a neuronal promoter, brain pathology from AD patients suggests an appearance of τ pathology in regions without Aß. METHODS: Here, we aimed to assess the link between τ and Aß using a new mouse model that was generated by crossing a mouse model that expresses two human mutations of the human MAPT under a mouse Tau natural promoter with 5xFAD mice that express human mutated APP and PS1 in neurons. RESULTS: The new mouse model, called 5xFAD TAU, shows accelerated cognitive impairment at 2 months of age, increased number of Aß depositions at 4 months and neuritic plaques at 6 months of age. An expression of human mutated TAU in astrocytes leads to a dystrophic appearance and reduces their ability to engulf Aß, which leads to an increased brain Aß load. Astrocytes expressing mutated human TAU showed an impairment in the expression of vascular endothelial growth factor (VEGF) that has previously been suggested to play an important role in supporting neurons. CONCLUSIONS: Our results suggest the role of τ in exacerbating Aß pathology in addition to pointing out the potential role of astrocytes in disease progression. Further research of the crosstalk between τ and Aß in astrocytes may increase our understanding of the role glia cells have in the pathology of AD with the aim of identifying novel therapeutic interventions to an otherwise currently incurable disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Lactente , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
FASEB J ; 35(5): e21374, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835493

RESUMO

Inhibition of insulin-degrading enzyme (IDE) is a possible target for treating diabetes. However, it has not yet evolved into a medical intervention, mainly because most developed inhibitors target the zinc in IDE's catalytic site, potentially causing toxicity to other essential metalloproteases. Since IDE is a cellular receptor for the varicella-zoster virus (VZV), we constructed a VZV-based inhibitor. We computationally characterized its interaction site with IDE showing that the peptide specifically binds inside IDE's central cavity, however, not in close proximity to the zinc ion. We confirmed the peptide's effective inhibition on IDE activity in vitro and showed its efficacy in ameliorating insulin-related defects in types 1 and 2 diabetes mouse models. In addition, we suggest that inhibition of IDE may ameliorate the pro-inflammatory profile of CD4+ T-cells toward insulin. Together, we propose a potential role of a designed VZV-derived peptide to serve as a selectively-targeted and as an efficient diabetes therapy.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/terapia , Insulina/metabolismo , Insulisina/antagonistas & inibidores , Fragmentos de Peptídeos/administração & dosagem , Proteínas do Envelope Viral/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/administração & dosagem , Feminino , Herpesvirus Humano 3/fisiologia , Insulisina/genética , Insulisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout
5.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563336

RESUMO

Stressful unpredictable life events have been implicated in numerous diseases. It is now becoming clear that some life periods are more vulnerable than others. As adolescence is a sensitive period in brain development, the long-term effects of stress during this period could be significant. We investigated the long-term effects of exposure to unpredictable chronic mild stress in adolescent mice on alternative splicing of Sirtuin 1. One-month-old mice were exposed to 4 weeks of UCMS and examined for anxiety and cognition at the age of 2, 4 and 6 months. We found a rise in anxious behavior immediately after the exposure to stress. Notably, there was a long-term impairment of performance in cognitive tasks and an imbalance in Sirtuin 1 and TrkB receptor alternative splicing in the stress-exposed mice compared with controls. To conclude, our results show that exposure to unpredictable chronic mild stress during adolescence affects cognition in adulthood. Understanding pathways affiliated with stress may help minimize the long-term emotional effects of an unpredictable, stressful event.


Assuntos
Processamento Alternativo , Sirtuína 1 , Estresse Psicológico , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Ansiedade/genética , Ansiedade/metabolismo , Cognição/fisiologia , Feminino , Camundongos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo
6.
J Neurochem ; 158(6): 1412-1424, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33314073

RESUMO

Microglia play a vital role in maintaining brain homeostasis. Their continuous sensing of surrounding micro-environments is crucial for their activity. Cross talk between specific neurons and microglia might occur through specific neurotransmitter receptors on microglia. Impairment with this interaction might result in pathological activity of microglia against potential insults. The reason for this activity in many neurodegenerative diseases such as Alzheimer's disease (AD) is not known. However, several papers report of the effects of different neurotransmitter agonists on microglial cells function that relate to their activity in AD. This review aims to summarize those works and to raise potential fundamental questions for future research.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Microglia/patologia , Neurônios/patologia , Receptores Colinérgicos/metabolismo
7.
J Neurochem ; 152(1): 61-71, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520492

RESUMO

It has been suggested that extracellular alpha synuclein (αSyn) can mediate neuroinflammation in Parkinson's disease, and that αSyn affects B-cell maturation. However, the function of αSyn in T cells is poorly understood. We hypothesized that αSyn can affect CD4+ T-cell proliferation and activity. We found that αSyn deficiency exacerbates disease progression in 8 weeks old C57BL6/J EAE-induced mice, and that αSyn-deficient CD4+ T cells have increased pro-inflammatory response to myelin antigen relative to wild-type cells, as measured by cytokine secretion of interleukin IL-17 and interferon gamma. Furthermore, expression of αSyn on a background of αSyn knockout mitigates the inflammatory responses in CD4+ T cells. We discovered that elevated levels of Nurr1, a transcription factor belonging to the orphan nuclear receptor family, are associated with the pro-inflammatory profile of αSyn-deficient CD4+ T cells. In addition, we demonstrated that silencing of Nurr1 expression using an siRNA reduces IL-17 levels and increases the levels of IL-10, an anti-inflammatory cytokine. Study of αSyn-mediated cellular pathways in CD4+ T cells may provide useful insights into the development of pro-inflammatory responses in immunity, providing future avenues for therapeutic intervention.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , alfa-Sinucleína/deficiência , Animais , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Inflamação/imunologia , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células Th1/imunologia , alfa-Sinucleína/genética , alfa-Sinucleína/fisiologia
8.
J Neural Transm (Vienna) ; 127(2): 149-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32016606

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease associated with motor deficiency and rigidity. The genetic risks of the disease is reported to be between 5 and 10% depending on the background of the population. While PD is not considered an immune-mediated disease, amounting evidence in recent years suggests a major role of inflammation in the progression of PD. Markers of inflammation can be found around the regions of risk and adjacent to the appearance of Lewy bodies within the basal ganglia and the substantia nigra (SN) that are associated with PD pathology. Microglia, an important type of brain cell, has been reported to play a major role in mediating neuroinflammation and in PD disease pathology. This review aims to point out the potential role of microglia in disease progression and suggest that the interaction of microglia with the dopaminergic neurons may also facilitate the specificity of the disease in brain regions affected by PD.


Assuntos
Progressão da Doença , Neurônios Dopaminérgicos , Inflamação , Microglia , Doença de Parkinson , Animais , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Microglia/imunologia , Microglia/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo
9.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380752

RESUMO

The two major proteins involved in Alzheimer's disease (AD) are the amyloid precursor protein (APP) and Tau. Here, we demonstrate that these two proteins can bind to each other. Four possible peptides APP1 (390-412), APP2 (713-730), Tau1 (19-34) and Tau2 (331-348), were predicted to be involved in this interaction, with actual binding confirmed for APP1 and Tau1. In vivo studies were performed in an Alzheimer Disease animal model-APP double transgenic (Tg) 5xFAD-as well as in 5xFAD crossed with Tau transgenic 5xFADXTau (FT), which exhibit declined cognitive reduction at four months of age. Nasal administration of APP1 and Tau1 mixture, three times a week for four or five months, reduced amyloid plaque burden as well as the level of soluble Aß 1-42 in the brain. The treatment prevented the deterioration of cognitive functions when initiated at the age of three months, before cognitive deficiency was evident, and also at the age of six months, when such deficiencies are already observed, leading to a full regain of cognitive function.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/etiologia , Placa Amiloide/patologia , Ligação Proteica
10.
J Neurosci ; 36(19): 5185-92, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170117

RESUMO

UNLABELLED: Multiple EGF-like domains 10 (Megf10) is a class F scavenger receptor (SR-F3) expressed on astrocytes and myosatellite cells, and recessive mutations in humans result in early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD). Here we report that Megf10-deficient mice have increased apoptotic cells in the developing cerebellum and have impaired phagocytosis of apoptotic cells by astrocytes ex vivo We also report that cells transfected with Megf10 gain the ability to phagocytose apoptotic neurons and that Megf10 binds with high affinity to C1q, an eat-me signal for apoptotic cells. In contrast, cells expressing Megf10 with EMARDD mutations have impaired apoptotic cell clearance and impaired binding to C1q. Our studies reveal that Megf10 is a receptor for C1q and identify a novel role for Megf10 in clearance of apoptotic cells in the mammalian developing brain with potential relevance to EMARDD patients and other CNS disorders. SIGNIFICANCE STATEMENT: Apoptosis is a universal homeostatic process and occurs in many disease conditions. Multiple EGF-like domains 10 (Megf10) is emerging as an essential receptor for synaptic pruning, clearance of neuronal debris, and for muscle differentiation. Here we define a novel Megf10-dependent pathway for apoptotic cell clearance and show that Megf10 is a receptor for C1q, an eat-me signal, that binds phosphatidylserine expressed on the surface of apoptotic cells. Understanding the pathways by which apoptotic cells are cleared in the CNS is relevant to many physiological and pathological conditions of the CNS.


Assuntos
Apoptose , Astrócitos/metabolismo , Complemento C1q/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Miopatias Distais/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fagocitose , Ligação Proteica
11.
J Neurochem ; 143(5): 584-594, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28921554

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder, of which 1% of the hereditary cases are linked to mutations in DJ-1, an oxidative stress sensor. The pathological hallmark of PD is intercellular inclusions termed Lewy Bodies, composed mainly of α-Synuclein (α-Syn) protein. Recent findings have shown that α-Syn can be transmitted from cell to cell, suggesting an important role of microglia, as the main scavenger cells of the brain, in clearing α-Syn. We previously reported that the knock down (KD) of DJ-1 in microglia increased cells' neurotoxicity to dopaminergic neurons. Here, we discovered that α-Syn significantly induced elevated secretion of the proinflammatory cytokines IL-6 and IL-1ß and a significant dose-dependent elevation in the production of nitric oxide in DJ-1 KD microglia, compared to control microglia. We further investigated the ability of DJ-1 KD microglia to uptake and degrade soluble α-Syn, and discovered that DJ-1 KD reduces cell-surface lipid raft expression in microglia and impairs their ability to uptake soluble α-Syn. Autophagy is an important mechanism for degradation of intracellular proteins and organelles. We discovered that DJ-1 KD microglia exhibit an impaired autophagy-dependent degradation of p62 and LC3 proteins, and that manipulation of autophagy had less effect on α-Syn uptake and clearance in DJ-1 KD microglia, compared to control microglia. Further studies of the link between DJ-1, α-Syn uptake and autophagy may provide useful insights into the role of microglia in the etiology of the PD.


Assuntos
Autofagia/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Proteína Desglicase DJ-1/metabolismo , alfa-Sinucleína/farmacologia , Animais , Células Cultivadas , Citocinas/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Proteína Desglicase DJ-1/deficiência , alfa-Sinucleína/metabolismo
12.
Nat Rev Immunol ; 6(5): 404-16, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16639431

RESUMO

Although Alzheimer's disease is considered to be a degenerative brain disease, it is clear that the immune system has an important role in the disease process. As discussed in this Review, immune-based therapies that are designed to remove amyloid-beta peptide from the brain have produced positive results in animal models of the disease and are being tested in humans with Alzheimer's disease. Although immunotherapy holds great promise for the treatment of Alzheimer's disease, clinical trials of active amyloid-beta vaccination of patients with Alzheimer's disease were discontinued after some patients developed meningoencephalitis. New immunotherapies using humoral and cell-based approaches are currently being investigated for the treatment and prevention of Alzheimer's disease.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Imunoterapia/métodos , Animais , Humanos
13.
Neurobiol Dis ; 96: 84-94, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27544484

RESUMO

In Alzheimer's disease (AD), astrocytes undergo morphological changes ranging from atrophy to hypertrophy, but the effect of such changes at the functional level is still largely unknown. Here, we aimed to investigate whether alterations in astrocyte activity in AD are transient and depend on their microenvironment, or whether they are irreversible. We established and characterized a new protocol for the isolation of adult astrocytes and discovered that astrocytes isolated from old 5xFAD mice have higher GFAP expression than astrocytes derived from WT mice, as observed in vivo. We found high C1q levels in brain sections from old 5xFAD mice in close vicinity to amyloid plaques and astrocyte processes. Interestingly, while old 5xFAD astrocytes are impaired in uptake of soluble Aß42, this effect was reversed upon an addition of exogenous C1q, suggesting a potential role for C1q in astrocyte-mediated Aß clearance. Our results suggest that scavenger receptor B1 plays a role in C1q-facilitated Aß uptake by astrocytes and that expression of scavenger receptor B1 is reduced in adult old 5xFAD astrocytes. Furthermore, old 5xFAD astrocytes show impairment in support of neuronal growth in co-culture and neurotoxicity concomitant with an elevation in IL-6 expression. Further understanding of the impact of astrocyte impairment on AD pathology may provide insights into the etiology of AD.


Assuntos
Envelhecimento , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica/genética , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígeno CD11b/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-6/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores de Complemento/metabolismo
14.
J Neural Transm (Vienna) ; 122(10): 1409-19, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25894287

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor disturbances, appearance of Lewy bodies and dopaminergic neuronal death. The etiology of PD is unknown, although aging and neurotoxins are established risk factors. The activation of glial cells in the brain is the first defense mechanism against pathological events in neurodegenerative diseases, and neuroinflammation is suggested to play an important role in PD disease progression leading to dopaminergic neuronal degeneration. Gene mutations in several PD-related genes may affect up to 15% of the PD cases. These gene mutations can cause either loss or gain of function in their respective proteins leading to autosomal recessive and autosomal dominant PD, respectively. Most of the identified genes play a role in mitochondrial activity and integrity, and this was demonstrated mostly in neuronal cells. In this review, we aim to describe the link between PD-related genes, which are involved in mitochondrial function, and deleterious neuroinflammation.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Animais , Humanos , Neuroimunomodulação
16.
J Biol Chem ; 288(2): 1295-306, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23155049

RESUMO

Accumulation of ß-amyloid (Aß) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in Aß pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral Aß loads. Both GSK-3 isozymes (α/ß) were hyperactive in this model. Nasal treatment of 5XFAD mice with a novel substrate competitive GSK-3 inhibitor, L803-mts, reduced Aß deposits and ameliorated cognitive deficits. Analyses of 5XFAD hemi-brain samples indicated that L803-mts restored the activity of mammalian target of rapamycin (mTOR) and inhibited autophagy. Lysosomal acidification was impaired in the 5XFAD brains as indicated by reduced cathepsin D activity and decreased N-glycoyslation of the vacuolar ATPase subunit V0a1, a modification required for lysosomal acidification. Treatment with L803-mts restored lysosomal acidification in 5XFAD brains. Studies in SH-SY5Y cells confirmed that GSK-3α and GSK-3ß impair lysosomal acidification and that treatment with L803-mts enhanced the acidic lysosomal pool as demonstrated in LysoTracker Red-stained cells. Furthermore, L803-mts restored impaired lysosomal acidification caused by dysfunctional presenilin-1. We provide evidence that mTOR is a target activated by GSK-3 but inhibited by impaired lysosomal acidification and elevation in amyloid precursor protein/Aß loads. Taken together, our data indicate that GSK-3 is a player in Aß pathology. Inhibition of GSK-3 restores lysosomal acidification that in turn enables clearance of Aß burdens and reactivation of mTOR. These changes facilitate amelioration in cognitive function.


Assuntos
Ácidos/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/fisiologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Autofagia , Encéfalo/metabolismo , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Técnicas In Vitro , Camundongos
17.
J Neurochem ; 129(3): 434-47, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24355073

RESUMO

DJ-1 is an oxidative stress sensor that localizes to the mitochondria when the cell is exposed to oxidative stress. DJ-1 mutations that result in gene deficiency are linked to increased risk of Parkinson's disease (PD). Activation of microglial stress conditions that are linked to PD may result in neuronal death. We postulated that DJ-1 deficiency may increase microglial neurotoxicity. We found that down-regulation of DJ-1 in microglia using an shRNA approach increased cell sensitivity to dopamine as measured by secreted pro-inflammatory cytokines such as IL-1ß and IL-6. Furthermore, we discovered that DJ-1-deficient microglia had increased monoamine oxidase activity that resulted in elevation of intracellular reactive oxygen species and nitric oxide leading to increased dopaminergic neurotoxicity. Rasagaline, a monoamine oxidase inhibitor approved for treatment of PD, reduced the microglial pro-inflammatory phenotype and significantly reduced neurotoxicity. Moreover, we discovered that DJ-1-deficient microglia have reduced expression of triggering receptor expressed on myeloid cells 2 (TREM2), previously suggested as a risk factor for pro-inflammation in neurodegenerative diseases. Further studies of DJ-1-mediated cellular pathways in microglia may contribute useful insights into the development of PD providing future avenues for therapeutic intervention


Assuntos
Indanos/farmacologia , Microglia/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Oncogênicas/deficiência , Animais , Western Blotting , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Dopamina/toxicidade , Ensaio de Imunoadsorção Enzimática , Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Neurotransmissores/toxicidade , Peroxirredoxinas , Fagocitose/efeitos dos fármacos , Fenótipo , Proteína Desglicase DJ-1 , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
NMR Biomed ; 27(7): 774-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24764262

RESUMO

Nanoparticles (NPs) have great potential to increase the diagnostic capacity of many imaging modalities. MRI is currently regarded as the method of choice for the imaging of deep tissues, and metal ions, such as calcium ions (Ca(2+)), are essential ingredients for life. Despite the tremendous importance of Ca(2+) for the well-being of living systems, the noninvasive determination of the changes in Ca(2+) levels in general, and extracellular Ca(2+) levels in particular, in deep tissues remains a challenge. Here, we describe the preparation and contrast mechanism of a flexible easy to prepare and selective superparamagnetic iron oxide (SPIO) NPs for the noninvasive determination of changes in extracellular Ca(2+) levels using conventional MRI. We show that SPIO NPs coated with monodisperse and purified alginate, having a specific molecular weight, provide a tool to selectively determine Ca(2+) concentrations in the range of 250 µm to 2.5 mm, even in the presence of competitive ions. The alginate-coated magnetic NPs (MNPs) aggregate in the presence of Ca(2+) , which, in turn, affects the T2 relaxation of the water protons in their vicinity. The new alginate-coated SPIO NP formulations, which have no effect on cell viability for 24 h, allow the detection of Ca(2+) levels secreted from ischemic cell cultures and the qualitative examination of the change in extracellular Ca(2+) levels in vivo. These results demonstrate that alginate-coated MNPs can be used, at least qualitatively, as a platform for the noninvasive MRI determination of extracellular Ca(2+) levels in myriad in vitro and in vivo biomedical applications.


Assuntos
Alginatos/química , Cálcio/análise , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Animais , Sobrevivência Celular , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Luz , Masculino , Camundongos Endogâmicos C57BL , Ratos Wistar , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Água
19.
Nat Chem Biol ; 8(8): 701-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706200

RESUMO

Phenylketonuria (PKU) is characterized by phenylalanine accumulation and progressive mental retardation caused by an unknown mechanism. We demonstrate that at pathological concentrations, phenylalanine self-assembles into fibrils with amyloid-like morphology and well-ordered electron diffraction. These assemblies are specifically recognized by antibodies, show cytotoxicity that can be neutralized by the antibodies and are present in the hippocampus of model mice and in parietal cortex brain tissue from individuals with PKU. This is, to our knowledge, the first demonstration that a single amino acid can form amyloid-like deposits, suggesting a new amyloidosis-like etiology for PKU.


Assuntos
Amiloide/química , Amiloide/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Fenilcetonúrias/metabolismo , Animais , Anticorpos , Biofísica , Células CHO , Cricetinae , Hipocampo , Humanos , Imunoprecipitação , Camundongos , Modelos Moleculares , Lobo Parietal , Conformação Proteica , Coelhos
20.
Brain Behav Immun ; 38: 249-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24561489

RESUMO

Group A ß-hemolytic streptococcal (GAS) infection is associated with a spectrum of neuropsychiatric disorders. The leading hypothesis regarding this association proposes that a GAS infection induces the production of auto-antibodies, which cross-react with neuronal determinants in the brain through the process of molecular mimicry. We have recently shown that exposure of rats to GAS antigen leads to the production of anti-neuronal antibodies concomitant with the development of behavioral alterations. The present study tested the causal role of the antibodies by assessing the behavior of naïve rats following passive transfer of purified antibodies from GAS-exposed rats. Immunoglobulin G (IgG) purified from the sera of GAS-exposed rats was infused directly into the striatum of naïve rats over a 21-day period. Their behavior in the induced-grooming, marble burying, food manipulation and beam walking assays was compared to that of naïve rats infused with IgG purified from adjuvant-exposed rats as well as of naïve rats. The pattern of in vivo antibody deposition in rat brain was evaluated using immunofluorescence and colocalization. Infusion of IgG from GAS-exposed rats to naïve rats led to behavioral and motor alterations partially mimicking those seen in GAS-exposed rats. IgG from GAS-exposed rats reacted with D1 and D2 dopamine receptors and 5HT-2A and 5HT-2C serotonin receptors in vitro. In vivo, IgG deposits in the striatum of infused rats colocalized with specific brain proteins such as dopamine receptors, the serotonin transporter and other neuronal proteins. Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders.


Assuntos
Corpo Estriado/imunologia , Imunoglobulina G/imunologia , Streptococcus pyogenes/imunologia , Animais , Comportamento Animal , Corpo Estriado/metabolismo , Masculino , Atividade Motora , Ratos , Ratos Endogâmicos Lew , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA