Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 239(4): 1434-1448, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301991

RESUMO

Plants impact the development of their rhizosphere microbial communities. It is yet unclear to what extent the root cap and specific root zones contribute to microbial community assembly. To test the roles of root caps and root hairs in the establishment of microbiomes along maize roots (Zea mays), we compared the composition of prokaryote (archaea and bacteria) and protist (Cercozoa and Endomyxa) microbiomes of intact or decapped primary roots of maize inbred line B73 with its isogenic root hairless (rth3) mutant. In addition, we tracked gene expression along the root axis to identify molecular control points for an active microbiome assembly by roots. Absence of root caps had stronger effects on microbiome composition than the absence of root hairs and affected microbial community composition also at older root zones and at higher trophic levels (protists). Specific bacterial and cercozoan taxa correlated with root genes involved in immune response. Our results indicate a central role of root caps in microbiome assembly with ripple-on effects affecting higher trophic levels and microbiome composition on older root zones.


Assuntos
Microbiota , Microbiologia do Solo , Rizosfera , Raízes de Plantas/microbiologia , Bactérias , Zea mays/genética
2.
ISME J ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39418324

RESUMO

With over 3 trillion trees, forest ecosystems comprise nearly one-third of the terrestrial surface of the Earth. Very little attention has been given to the exploration of the above-ground plant microbiome of trees, its complex trophic interactions, and variations among tree species. To address this knowledge gap, we applied a primer-independent shotgun metatranscriptomic approach to assess the entire living canopy bark microbiome comprising prokaryotic and eukaryotic primary producers, decomposers, and various groups of consumers. With almost 1500 genera, we found a high microbial diversity on three tree species with distinct bark textures: oak (Quercus robur), linden (Tilia cordata), both with rough bark, and maple (Acer pseudoplatanus) with smooth bark. Core co-occurrence network analysis revealed a rich food web dominated by algal primary producers, and bacterial and fungal decomposers, sustaining a diverse community of consumers, including protists, microscopic metazoans and predatory bacteria. Whereas maple accommodated a depauperate microbiome, oak and linden accommodated a richer microbiome mainly differing in their relative community composition: Bacteria exhibited an increased dominance on linden, whereas co-occurring algae and fungi dominated on oak, highlighting the importance of algal-fungal lichen symbioses even at the microscopic scale. Further, due to bacteria-fungi co-exclusion, bacteria on bark are not the main beneficiaries of algae-derived carbon compounds as it is known from aquatic systems.

3.
ISME Commun ; 4(1): ycae028, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38500704

RESUMO

While it is acknowledged that alpine soil bacterial communities are primarily driven by season and elevation, there is no consensus on the factors influencing fungi and protists. Here we used a holistic approach of the microbiome to investigate the seasonal dynamics in alpine grasslands, focusing on soil food web interactions. We collected 158 soil samples along elevation transects from three mountains in the Alps, in spring during snowmelt and in the following summer. Using metatranscriptomics, we simultaneously assessed prokaryotic and eukaryotic communities, further classified into trophic guilds. Our findings reveal that the consumers' pressure increases from spring to summer, leading to more diverse and evenly distributed prey communities. Consequently, consumers effectively maintain the diverse soil bacterial and fungal communities essential for ecosystem functioning. Our research highlights the significance of biotic interactions in understanding the distribution and dynamics of alpine microbial communities.

4.
Water Res ; 242: 120293, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421865

RESUMO

The physicochemical parameters that shape the prokaryotic community composition in wastewater have been extensively studied. In contrast, it is poorly understood whether and how biotic interactions affect the prokaryotic community composition in wastewater. We used metatranscriptomics data from a bioreactor sampled weekly over 14 months to investigate the wastewater microbiome, including often neglected microeukaryotes. Our analysis revealed that while prokaryotes are unaffected by seasonal changes in water temperature, they are impacted by a seasonal, temperature-induced change in the microeukaryotic community. Our findings suggest that selective predation pressure exerted by microeukaryotes is a significant factor shaping the prokaryotic community in wastewater. This study underscores the importance of investigating the entire wastewater microbiome to develop a comprehensive understanding of wastewater treatment.


Assuntos
Microbiota , Águas Residuárias , Água
5.
Microbiome ; 10(1): 27, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139924

RESUMO

BACKGROUND: During wastewater treatment, the wastewater microbiome facilitates the degradation of organic matter, reduction of nutrients, and removal of gut parasites. While the latter function is essential to minimize public health risks, the range of parasites involved and how they are removed is still poorly understood. RESULTS: Using shotgun metagenomic (DNA) and metatranscriptomic (RNA) sequencing data from ten wastewater treatment plants in Switzerland, we were able to assess the entire wastewater microbiome, including the often neglected microeukaryotes (protists). In the latter group, we found a surprising richness and relative abundance of active parasites, particularly in the inflow. Using network analysis, we tracked these taxa across the various treatment compartments and linked their removal to trophic interactions. CONCLUSIONS: Our results indicate that the combination of DNA and RNA data is essential for assessing the full spectrum of taxa present in wastewater. In particular, we shed light on an important but poorly understood function of wastewater treatment - parasite removal. Video Abstract.


Assuntos
Parasitos , Purificação da Água , Animais , Bactérias , Metagenoma , Metagenômica/métodos , Parasitos/genética
6.
Front Microbiol ; 12: 614501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643242

RESUMO

It is by now well proven that different plant species within their specific root systems select for distinct subsets of microbiota from bulk soil - their individual rhizosphere microbiomes. In maize, root growth advances several centimeters each day, with the locations, quality and quantity of rhizodeposition changing. We investigated the assembly of communities of prokaryotes (archaea and bacteria) and their protistan predators (Cercozoa, Rhizaria) along the longitudinal root axis of maize (Zea mays L.). We grew maize plants in an agricultural loamy soil and sampled rhizosphere soil at distinct locations along maize roots. We applied high-throughput sequencing, followed by diversity and network analyses in order to track changes in relative abundances, diversity and co-occurrence of rhizosphere microbiota along the root axis. Apart from a reduction of operational taxonomic unit (OTU) richness and a strong shift in community composition between bulk soil and root tips, patterns of microbial community assembly along maize-roots were more complex than expected. High variation in beta diversity at root tips and the root hair zone indicated substantial randomness of community assembly. Root hair zone communities were characterized by massive co-occurrence of microbial taxa, likely fueled by abundant resource supply from rhizodeposition. Further up the root where lateral roots emerged processes of community assembly appeared to be more deterministic (e.g., through competition and predation). This shift toward significance of deterministic processes was revealed by low variability of beta diversity, changes in network topology, and the appearance of regular phylogenetic co-occurrence patterns in bipartite networks between prokaryotes and their potential protistan predators. Such patterns were strongest in regions with fully developed laterals, suggesting that a consistent rhizosphere microbiome finally assembled. For the targeted improvement of microbiome function, such knowledge on the processes of microbiome assembly on roots and its temporal and spatial variability is crucially important.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA